四邊形---教案 篇1
一、學習目標:
1、了解中點四邊形的概念
2、靈活應用三角形的中位線性質(zhì)研究中點四邊形與原四邊形的關系。
二、學習重點、難點
1、重點:研究中點四邊形與原四邊形的關系;
2、難點:找出中點四邊形與原四邊形的形狀的變化規(guī)律。
三、學習過程:
(一)、復習:三角形的中位線性質(zhì):利用右圖用幾何語言表示
(二)、練習:
1.證明:順次連結四邊形的各邊中點所組成的四邊形(簡稱中點四邊形)是平行四邊形。
已知:
求證:
2、與周圍的同學交流一下證明方法。
從以上的證明過程中可知:中點四邊形的邊與原四邊形的對角線有密切關系。
3、通過畫圖猜想:順次連結矩形的各邊中點所組成的四邊形是什么形狀?
請證明你的結論。
4、回味剛才的證明過程,想一想:要使中點四邊形是菱形,原四邊形一定要是矩形嗎?
由此可得:只要原四邊形的兩條對角線 ,就能使中點四邊形是菱
形。
5、通過畫圖猜想:順次連結菱形的各邊中點所組成的四邊形是什么形狀?
請證明你的結論。
6、回味剛才的證明過程,想一想:要使中點四邊形是矩形,原四邊形一定要是菱形嗎?
由此可得:只要原四邊形的兩條對角線 ,就能使中點四邊形是矩形。
7、討論一下:要使中點四邊形是正方形,原四邊形要符合的條件是
8、小結:
(1)中點四邊形最起碼是一個 ;
(2)原四邊形的對角線與中點四邊形的邊有密切關系:
原四邊形的兩條對角線相等 中點四邊形的鄰邊也 中點四邊形是 形