《平方差公式》教案 篇1
教學內容: P108—110 平方差公式 例1 例2 例3
教學目的: 1、使學生會推導平方差公式,并掌握公式特征。2、使學生能正確而熟練地運用平方差公式進行計算。
教學重點:使學生會推導平方差公式,掌握公式特征,并能正確而熟練地運用平方差公式進行計算。
教學難點:掌握平方差公式的特征,并能正確而熟練地運用它進行計算。
教學過程:
一、復習引入
1、復述多項式與多項式的乘法法則
2、計算 (演板)
(1)(a+b)(a-b) (2)(m+n)(m-n)
(3)(x+y)(x-y) (4)(2a+3b)(2a-3b)
3、引入新課,由2題的計算引導學生觀察題目特征,結果特征(引入新課,板書課題)
二、新課
1、平方差公式
由上面的運算,再讓學生探究現在你能很快算出多項式(2m+3n)與多項式(2m-3n)的乘積嗎? 引導學生把2m看成a,3n看成b寫出結果.
(2m+3n)(2m-3n)=(2m)2-(3m)2=4m2-9n2
(a + b)(a - b)= a2 - b2
向學生說明:我們把(a+b)(a-b)=a2- b2 (重點強調公式特征)叫做平方差公式,也就是:兩個數的和與這兩個數的差等于這兩個數的平方差.
3、練習:判斷下列式子哪些能用平方差公計算。(小黑板)
。1)(-x-2y)(-x+2y) (2)(-2a+3b)(2a-3b)
(3)(a+3b)(3a-b) (4)(-m-3n)(m-3n)
2、教學例1
(1)(2x+1)(2x-1); (2) (x+2y)(x-2y)
(2)分析:讓學生先說一說這兩個式子是否符合平方差公式特征,再說一說哪個相當于公式中的a,哪個相當于公式中的b,然后套公式。
(3)具體解題過程:板書,同教材,略