《因數和倍數》教學案例與反思
給一片空間 換一串碩果
【教學內容】人教版數學五年級下冊p12一14,練習二。
【教學過程】
一、操作空間,初步感知。
1.同桌用12塊完全一樣的小正方形拼成一個長方形,有幾種拼法?要求:能想象的就想象,不能想象的才借助小正方形擺一擺。
2.學生動手操作,并與同桌交流擺法。
3.請用算式表達你的擺法。
匯報:112=12,26=12,34=12。
【評析】通過讓學生動手操作、想象、表達等環節,既為新知探索提供材料,又孕育求一個數的因數的思考方法。
二、探索空間,理解新知。
1.理解因數和倍數。
(1)觀察34=12,你能從數學的角度說說它們之間的關系嗎?
師根據學生的表達完成以下板書:
3是12的因數
12是3的倍數
4是12的因數
12是4的倍數
3和4是12的因數
12是3和4的倍數
(2)用因數和倍數說說算式l12=12,26=12的關系。
(3)觀察因數和倍數的相互關系。揭示:研究因數和倍數時,所指的數是整數(一般不包括o)。
2.求一個數的因數。
(1)出示2,5,12,15,36。從這些數中找一找誰是誰的因數。
學生匯報。
師:2和12是36的因數,找1個、2個不難,難就難在把36所有的因數全部找出來,請同學們找出36的所有因數。
出示要求:
①可獨立完成,也可同桌合作。
②可借助剛才找出12的所有因數的方法。
③寫出36的所有因數。
④想一想,怎樣找才能保證既不重復,又不遺漏。
教師巡視,展示學生幾種答案。
生1:1,2,3,4,9,12,36。
生2:1,36,2,18,3,12,4,9,6。
生3:1,4,2,36,9,3,6,12,18。
(2)比較喜歡哪一種答案?為什么?
用什么方法找既不重復又不遺漏。(按順序一對一對找,一直找到兩個因數相差很小或相等為止)
師:有序思考更能準確找出一個數的所有因數。
完成板書:描述式、集合式。
(3)30的因數有哪些?
【評析】學生圍繞教師出示的思考步驟,尋找36的所有因數。既留足了自主探索的空間,又在方法上有所引導,避免了學生的盲目猜測。通過展示、比較不同的答案,發現了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學的難點。
3.求一個數的倍數。
(1)3的倍數有:——,怎樣有序地找,有多少個?
找一個數的倍數,用l,2,3,4……分別乘這個數。
(2)練一練:6的倍數有:
,40以內6的倍數有:一o
【評析】由于有了有序思考的基礎,求一個數的倍數水到渠成,本環節重在思考方法上的提升。