積的變化規律
課題:積的變化規律教學內容:探索當一個因數不變時,另一個因數與積的變化規律情況。(課文第58頁的例4,“做一做”及相應的練習)
教學目標:
1、 學生通過觀察,能夠發現并總結積的變化規律。
2、 使學生經歷變化規律的發現過程,感受發現數學中的規律是一件十分有趣的事情。
3、 嘗試用簡潔的語言表達積的變化規律,培養初步的概括和表達能力。
4、 初步獲得探索規律的一般方法和經驗,發展學生的推理能力。
5、培養學生初步的抽象、概括能力及善于觀察、勤于思考、勇于探索的良好習慣。
教學重點:引導學生自己發現并總結積的變化規律。
教學難點:引導學生自己發現并總結積的變化規律。
教具準備:圖片。
教學過程:
一、研究“兩數相乘,其中一個因數變化,它們的積如何變化餓規律。
1、研究問題,概括規律。
(1)兩數相乘,一個因數不變,另一個因數乘幾時,積怎么變化。
學生完成下列兩組計算,想一想發現了什么?你能根據每組算式的特點接下去再寫兩道算式嗎?試試看
6×2= 8×125=
6×20= 24×125=
6×200= 72×125=
組織小組交流。
歸納規律:兩數相乘,當一個因數不變,另一個因數乘幾時,積也要乘幾。
(2)兩數相乘,一個因數不變,另一個因數除以幾時,積有怎么變化?學生完成下列兩組計算,想一想有發現了什么?
8×4= 25×160=
40×4= 25×40=
20×4= 25×10=
引導學生概括:兩數相乘,當一個因數不變,另一個因數除以幾時,積也要除以幾。
(3)整體概括規律
問:誰能用一句話將發現的兩條規律概括為一條?
引導學生總結規律。
2、驗證規律
1)先用積的變化規律填空,再用筆算或計算器驗算。
26×48= 17×12=
26×24= 17×24=
26×12= 17×36=
自己舉例說明積的變化規律
3、應用規律
完成例4下面的做一做和練習9的1-——4題。
二、研究“兩數相乘,兩個因數都發生變化,積變化的規律“。
1、獨立思考,發現規律
完成下列計算,說規律。
18×24= (18÷2)×(24×2)= (18×2)×(24÷2)=
105×45= (105÷5)×(45×5)= (105×3)×(45÷3)=
2、組織全班交流,概括規律:兩數相乘,一個因數乘(或除以)幾,另一個因數除以(或乘)幾,它們的乘積不變。
三、鞏固新知
1、書上練習九的1、2、3。
2、一個長方形的面積是256平方厘米,如果長縮小到原來的 ,寬擴大到原來的4倍,這個長方形就變成了正方形,這個正方形的面積是多少?它的邊長是多少?
五、總結:這節課有什么收獲?
六、作業:第59頁4、5。