三、比例
(2)觀察圖表,發現什么規律?
用式子表示它們的關系:總價/米數=單價(一定)
3、抽象概括正比例的意義。
(1)比較例1、例2,思考并討論:這兩個例題有什么共同點?
(2)兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關系叫做正比例關系。
(3)看書p39,進一步理解正比例的意義。
(4)如果用x和y表示兩種相關聯的量,用k表示它們的比值(一定),正比例關系怎樣用字母表示出來?
x/y=k(一定)
(5)根據正比例的意義以及表示正比例的式子想一想:構成正比例關系的兩種量必須具備哪些條件?
4、看書p40例2。
(1)題中有幾種量?哪兩種量是相關聯的量?
(2)體積和高度的比的比值是多少?這個比值是什么?是不是一定?
(3)它們的數量關系式是什么?
(4)從圖中你發現了什么?
(5)不計算,根據圖像判斷,如果杯中水的高度是7厘米,那么水的體積是多少?225立方厘米的水有多高?
三、課堂小結:
什么是成正比例的量?它必須具備什么條件?怎樣判斷成正比例的量?
四、課堂練習:
1、p41做一做
2、p43~44練習七第1~5題。
第二課時 成反比例的量
教學內容:p42 成反比例的量
教學目的:1、理解反比例的意義,能根據反比例的意義,正確的判斷兩種量是否成反比例。
2、通過引導學生討論探究,分析合作,使學生進一步認識事物之間的聯系和發展變化的規律。
3、初步滲透函數思想。
教學重點:引導學生總結出成反比例的量,是相關的兩種量中相對應的兩個數積一定,進而抽象概括出成反比例的關系式.
教學難點:利用反比例的意義,正確判斷兩個量是否成反比例.
教學過程:
一、復習鋪墊
1、下面兩種量是不是成正比例?為什么?
購買練習本的價錢0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本.
2、成正比例的量有什么特征?
二、探究新知
1、導入新課:這節課我們繼續學習常見的數量關系中的另一種特征——成反比例的量。
2、教學p42例3。
(1)引導學生觀察上表內數據,然后回答下面問題:
a、表中有哪兩種量?這兩種量相關聯嗎?為什么?
b、水的高度是否隨著底面積的變化而變化?怎樣變化的?
c、表中兩個相對應的數的比值各是多少?一定嗎?兩個相對應的數的積各是多少?你能從中發現什么規律嗎?
d、這個積表示什么?寫出表示它們之間的數量關系式
(2)從中你發現了什么?這與復習題相比有什么不同?
a、學生討論交流。
b、引導學生回答:
(3)教師引導學生明確:因為水的體積一定,所以水的高度隨著底面積的變化面變化。底面積增加,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定,我們就說高度和底面積成反比例關系,高度和底面積叫做成反比例的量。
(4)如果用字母x和y表示兩種相關的量,用k表示它們的積一定,反比例可以用一個什么樣的式子表示?板書:y=k(一定)
三、鞏固練習
1、想一想:成反比例的量應具備什么條件?
2、判斷下面每題中的兩個量是不是成反比例,并說明理由。
(1)路程一定,速度和時間。
(2)小明從家到學校,每分走的速度和所需時間。