三、比例
3、教學例3。
出示例3:解比例 =
提問:“這個比例與例 2有什么不同?”(這個比例是分數形式。)
這種分數形式的比例也能根據比例的基本性質,變成方程來求解嗎?
學生回答后,教師說明在寫方程時,含有未知數的積通常寫在等號的左邊,然后板書:1.5x=2.5×6
讓學生在課本上填出求解過程。解答后,讓他們說一說是怎樣解的。
4、總結解比例的過程。
剛才我們學習了解比例,大家回憶一下,解比例首先要做什么?(根據比例的基本性質把比例變成方程。)
變成方程以后,再怎么做?(根據以前學過的解方程的方法求解。)
從上面的過程可以看出,在解比例的過程中哪一步是新知識?(根據比例的基本性質把比例變成方程。)
5、p35“做一做”。學生獨立解答,訂正時,讓學生說說是怎么做的。
三、鞏固深化,拓展思維
p37第7題。
四、全課小結,提高認識
什么叫解比例?解比例的根據是什么?解比例的書寫格式應注意什么?
五、課堂練習,輔助消化
p37~38第8~11題。
六、課外補充,拓展延伸
1、p38第12、13題。
2、4:8=12:24,如果將第二項減少1,要使比例成立,則第四項減少多少?
3、把兩個比值都是 的比組成比例,已知比例的兩個內項都是15,請分別求出這個比例的兩個外項,并寫出比例。
4、一個比例的四個項都是大于0的整數,它的兩個比的比值都是 ,且第一項比第二項少3,第三項是第一項的3倍。請寫出這個比例。
2、正比例和反比例的意義
第一課時 成正比例的量
教學內容:p39~41 成正比例的量
教學要求:1、使學生理解正比例的意義,能根據正比例的意義判斷是不是成正比例。
2、培養學生概括能力和分析判斷能力。
3、培養學生用發展變化的觀點來分析問題的能力。
教學重點:成正比例的量的特征及其判斷方法。
教學難點:理解兩個變量之間的比例關系,發現思考兩種相關聯的量的變化規律.
教學過程:
一、四顧舊知,復習鋪 墊
1、已知路程和時間,求速度
2、已知總價和數量,求單價
3、已知工作總量和工作時間,求工作效率
二、引導探索,學習新知
1、教學例1:
出示:一列火車1小時行駛90千米,2小時行駛180千米,
3小時行駛270千米,4小時行駛360千米,
5小時行駛450千米,6小時行駛540千米,
7小時行駛630千米,8小時行駛720千米……
(1)出示下表,填表
一列火車行駛的時間和路程
時間
路程
填表,思考:在填表中你發現了什么?
時間變化,路程也隨著變化,我們就說時間和路程是兩個相關聯的量。(板書:兩種相關聯的量)
根據計算,你發現了什么?
相對應的兩個數的比的比值一樣或固定不變,在數學上叫做一定。
用式子表示他們的關系是:路程/時間=速度(一定)(板書)
(2)教師小結:
同學們通過填表,交流,知道時間和路程是.兩種相關聯的量,路程隨著時間的變化而變化.時間擴大,路程隨著擴大;時間縮小,路程也隨著縮小。即:路程/時間=速度(一定)
2、教學例2:
(1)花布的米數和總價表
數量 1 2 3 4 5 6 7 ……
總價 8.2 16.4 24.6 32.8 41.0 49.2 57.4 ……