圓柱的體積
教學內容: 教材第8~9頁公式、例4和“練一練”,練習二第1~4題。教學要求:
1. 使學生理解和掌握計算公式,并能根據題里的條件正確地求出。
2. 培養學生初步的空間觀念和思維能力;讓學生認識“轉化”的思考方法。
教具準備:圓柱體積演示教具。
教學重點:理解和掌握計算公式。
教學難點 :圓柱體積計算公式的推導。
教學過程 :
一、復習引新
1.求下面各圓的面積(回答)。
(1)r=1厘米; (2)d=4分米; (3)C=6.28米。
要求說出解題思路。
2.想一想:學習計算圓的面積時,是怎樣得出圓的面積計算公式的?指出:把一個圓等分成若干等份,可以拼成一個近似的長方形。這個長方形的面積就是圓的面積。
3.提問:什么叫體積?常用的體積單位有哪些?
4.已知長方體的底面積s和高h,怎樣計算長方體的體積?(板書:長方體的體積=底面積×高)
二、教學新課
1.根據學過的體積概念,說說什么是。(板書課題)
2.怎樣計算呢?我們能不能根據圓柱的底面可以像上面說的轉化成一個長方形,通過切、拼的方法,把圓柱轉化為已學過的立體圖形來計算呢,現在我們大家一起來討論。
3.公式推導。(有條件的可分小組進行)
(1)請同學指出圓柱體的底面積和高。
(2)回顧圓面積公式的推導。(切拼轉化)
(3)探索求圓柱體積的公式。
根據圓面積剪、拼轉化成長方形的思路,我們也可以運用切拼轉化的方法把圓柱體變成學過的幾何形體來推導出計算公式。你能想出怎樣切、拼轉化嗎?請同學們仔細觀察以下實驗,邊觀察邊思考、底面積、高與拼成的幾何形體之間的關系。教師演示圓柱體積公式推導演示教具:把圓柱的底面分成許多相等的扇形(數量一般為16個),然后把圓柱切開,照下圖拼起來,(圖見教材)就近似于一個長方體。可以想象,分成的扇形越多,拼成的立體圖形就越接近于長方體。
(4)討論并得出結果。
你能根據這個實驗得出計算公式嗎?為什么?讓學生再討論:圓柱體通過切拼,圓柱體轉化成近似的 體。這個長方體的底面積與圓柱體的底面積 ,這個長方體的高與圓柱體的高 。因為長方體的體積等于底面積乘以高,所以,圓柱體的體積計算公式是: 。(板書:=底面積×高)用字母表示: 。(板書:V=Sh)
(5)小結。
是怎樣推導出來的?計算必須知道哪些條件?
4.教學例4。
出示例4,審題。提問:你能獨立完成這題嗎?指名一同學板演,其余學生做在練習本上。集體訂正:列式依據是什么?應注意哪些問題?(單位統一,最后結果用體積單位)
5.做練習二第1題。
讓學生做在課本上。指名口答,集體訂正。追問:是怎樣算的?
6.教學“試一試”一個圓柱的底面半徑是2分米,高是8米,求它的體積。指名一人板演,其余學生做在練習本上。評講“試一試”小結:求,必須知道底面積和高。如果不知道底面積,只知道半徑r,通過什么途徑求出?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面積再求體積。
三、鞏固練習
做“練一練”第1、2題。讓學生做在練習本上。指名口答算式,老師板書。讓學生說一說這兩題列式有什么不同,為什么不一樣。
四、課堂小結
這節課學習了什么內容?怎樣計算,這個公式是怎樣得到的?指出:這節課,我們通過轉化,把圓柱體切拼轉化成長方體,(在課題下板書:圓柱些長方體)得出了圓柱體的體積計算公式V=Sh。
五、布置作業
課堂作業 :練習二第2,3題。
家庭作業 :練習二第4題。