夜夜躁爽日日躁狠狠躁视频,亚洲国产精品无码久久一线,丫鬟露出双乳让老爷玩弄,第一次3q大战的经过和结果

首頁 > 教案下載 > 數學教案 > 數學等差數列教案(通用7篇)

數學等差數列教案

發布時間:2023-10-31

數學等差數列教案(通用7篇)

數學等差數列教案 篇1

  【教學目標】

  1.知識與技能

  (1)理解等差數列的定義,會應用定義判斷一個數列是否是等差數列:

  (2)賬務等差數列的通項公式及其推導過程:

  (3)會應用等差數列通項公式解決簡單問題。

  2.過程與方法

  在定義的理解和通項公式的.推導、應用過程中,培養學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規律,提高熟悉猜想和歸納的能力,滲透函數與方程的思想。

  3.情感、態度與價值觀通過教師指導下學生的自主學習、相互交流和探索活動,培養學生主動探索、用于發現的求知精神,激發學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養成細心觀察、認真分析、善于總結的良好習慣。

  【教學重點】

  ①等差數列的概念;

  ②等差數列的通項公式

  【教學難點】

  ①理解等差數列“等差”的特點及通項公式的含義;

  ②等差數列的通項公式的推導過程.

  【學情分析】

  我所教學的學生是我校高一(7)班的學生(平行班學生),經過一年的高中數學學習,大部分學生知識經驗已較為豐富,他們的智力發展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發,注重引導、啟發、研究和探討以符合這類學生的心理發展特點,從而促進思維能力的進一步發展.

  【設計思路】

  1.教法

  ①啟發引導法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調動學生的主動性和積極性,發揮其創造性.

  ②分組討論法:有利于學生進行交流,及時發現問題,解決問題,調動學生的積極性.

  ③講練結合法:可以及時鞏固所學內容,抓住重點,突破難點.

  2.學法引導學生首先從三個現實問題(數數問題、水庫水位問題、儲蓄問題)概括出數組特點并抽象出等差數列的概念;接著就等差數列概念的特點,推導出等差數列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法.

  【教學過程】

  一:創設情境,引入新課

  1.從0開始,將5的倍數按從小到大的順序排列,得到的數列是什么?

  2.水庫管理人員為了保證優質魚類有良好的生活環境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數列?

  3.我國現行儲蓄制度規定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內各年末的本利和(單位:元)組成一個什么數列?

  教師:以上三個問題中的數蘊涵著三列數.

  學生:

  1:0,5,10,15,20,25,….

  2:18,15.5,13,10.5,8,5.5.

  3:10072,10144,10216,10288,10360.

  (設置意圖:從實例引入,實質是給出了等差數列的現實背景,目的是讓學生感受到等差數列是現實生活中大量存在的數學模型.通過分析,由特殊到一般,激發學生學習探究知識的自主性,培養學生的歸納能力.

  二:觀察歸納,形成定義

  ①0,5,10,15,20,25,….

  ②18,15.5,13,10.5,8,5.5.

  ③10072,10144,10216,10288,10360.

  思考1上述數列有什么共同特點?

  思考2根據上數列的共同特點,你能給出等差數列的一般定義嗎?

  思考3你能將上述的文字語言轉換成數學符號語言嗎?

  教師:引導學生思考這三列數具有的共同特征,然后讓學生抓住數列的特征,歸納得出等差數列概念.

  學生:分組討論,可能會有不同的答案:前數和后數的差符合一定規律;這些數都是按照一定順序排列的…只要合理教師就要給予肯定.

  教師引導歸納出:等差數列的定義;另外,教師引導學生從數學符號角度理解等差數列的定義.

  (設計意圖:通過對一定數量感性材料的觀察、分析,提煉出感性材料的本質屬性;使學生體會到等差數列的規律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數”,落實對等差數列概念的準確表達.)

  三:舉一反三,鞏固定義

  1.判定下列數列是否為等差數列?若是,指出公差d.

  (1)1,1,1,1,1;

  (2)1,0,1,0,1;

  (3)2,1,0,-1,-2;

  (4)4,7,10,13,16.

  教師出示題目,學生思考回答.教師訂正并強調求公差應注意的問題.

  注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數與減數弄顛倒,而且公差可以是正數,負數,也可以為0 .

  (設計意圖:強化學生對等差數列“等差”特征的理解和應用).

  2.思考4:設數列{an}的通項公式為an=3n+1,該數列是等差數列嗎?為什么?

  (設計意圖:強化等差數列的證明定義法)

  四:利用定義,導出通項

  1.已知等差數列:8,5,2,…,求第200項?

  2.已知一個等差數列{an}的首項是a1,公差是d,如何求出它的任意項an呢?

  教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示.根據學生在課堂上的具體情況進行具體評價、引導,總結推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數列問題的常用方法.

  (設計意圖:引導學生觀察、歸納、猜想,培養學生合理的推理能力.學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創新的品質,激發學生的創造意識.鼓勵學生自主解答,培養學生運算能力)

  五:應用通項,解決問題

  1判斷100是不是等差數列2,9,16,…的項?如果是,是第幾項?

  2在等差數列{an}中,已知a5=10,a12=31,求a1,d和an.

  3求等差數列3,7,11,…的第4項和第10項

  教師:給出問題,讓學生自己操練,教師巡視學生答題情況.

  學生:教師叫學生代表總結此類題型的解題思路,教師補充:已知等差數列的首項和公差就可以求出其通項公式

  (設計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯系.初步認識“基本量法”求解等差數列問題.)

  六:反饋練習:教材13頁練習1

  七:歸納總結:

  1.一個定義:等差數列的定義及定義表達式

  2.一個公式:等差數列的通項公式

  3.二個應用:定義和通項公式的應用

  教師:讓學生思考整理,找幾個代表發言,最后教師給出補充

  (設計意圖:引導學生去聯想本節課所涉及到的各個方面,溝通它們之間的聯系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)

數學等差數列教案 篇2

  2。2。1等差數列學案

  一、預習問題:

  1、等差數列的定義:一般地,如果一個數列從 起,每一項與它的前一項的差等于同一個 ,那么這個數列就叫等差數列,這個常數叫做等差數列的 , 通常用字母 表示。

  2、等差中項:若三個數 組成等差數列,那么A叫做 與 的 ,

  即 或 。

  3、等差數列的單調性:等差數列的公差 時,數列為遞增數列; 時,數列為遞減數列; 時,數列為常數列;等差數列不可能是 。

  4、等差數列的通項公式: 。

  5、判斷正誤:

  ①1,2,3,4,5是等差數列; ( )

  ②1,1,2,3,4,5是等差數列; ( )

  ③數列6,4,2,0是公差為2的等差數列; ( )

  ④數列 是公差為 的等差數列; ( )

  ⑤數列 是等差數列; ( )

  ⑥若 ,則 成等差數列; ( )

  ⑦若 ,則數列 成等差數列; ( )

  ⑧等差數列是相鄰兩項中后項與前項之差等于非零常數的數列; ( )

  ⑨等差數列的公差是該數列中任何相鄰兩項的差。 ( )

  6、思考:如何證明一個數列是等差數列。

  二、實戰操作:

  例1、(1)求等差數列8,5,2,的第20項。

  (2) 是不是等差數列 中的項?如果是,是第幾項?

  (3)已知數列 的公差 則

  例2、已知數列 的通項公式為 ,其中 為常數,那么這個數列一定是等差數列嗎?

  例3、已知5個數成等差數列,它們的和為5,平方和為 求這5個數。

數學等差數列教案 篇3

  一、知識與技能

  1.了解公差的概念,明確一個數列是等差數列的限定條件,能根據定義判斷一個數列是等差數列;

  2.正確認識使用等差數列的各種表示法,能靈活運用通項公式求等差數列的首項、公差、項數、指定的項.

  二、過程與方法

  1.通過對等差數列通項公式的推導培養學生:的觀察力及歸納推理能力;

  2.通過等差數列變形公式的教學培養學生:思維的深刻性和靈活性.

  三、情感態度與價值觀

  通過等差數列概念的歸納概括,培養學生:的觀察、分析資料的能力,積極思維,追求新知的創新意識.

  教學過程

  導入新課

  師:上兩節課我們學習了數列的定義以及給出數列和表示數列的幾種方法——列舉法、通項公式、遞推公式、圖象法.這些方法從不同的角度反映數列的特點.下面我們看這樣一些數列的例子:(課本P41頁的4個例子)

  (1)0,5,10,15,20,25,…;

  (2)48,53,58,63,…;

  (3)18,15.5,13,10.5,8,5.5…;

  (4)10 072,10 144,10 216,10 288,10 366,….

  請你們來寫出上述四個數列的第7項.

  生:第一個數列的第7項為30,第二個數列的第7項為78,第三個數列的第7項為3,第四個數列的第7項為10 510.

  師:我來問一下,你依據什么寫出了這四個數列的第7項呢?以第二個數列為例來說一說.

  生:這是由第二個數列的后一項總比前一項多5,依據這個規律性我得到了這個數列的第7項為78.

  師:說得很有道理!我再請同學們仔細觀察一下,看看以上四個數列有什么共同特征?我說的是共同特征.

  生:1每相鄰兩項的差相等,都等于同一個常數.

  師:作差是否有順序,誰與誰相減?

  生:1作差的順序是后項減前項,不能顛倒.

  師:以上四個數列的共同特征:從第二項起,每一項與它前面一項的差等于同一個常數(即等差);我們給具有這種特征的數列起一個名字叫——等差數列.

  這就是我們這節課要研究的內容.

  推進新課

  等差數列的定義:一般地,如果一個數列從第二項起,每一項與它前一項的差等于同一個常數,這個數列就叫做等差數列,這個常數就叫做等差數列的公差(常用字母“d”表示).

  (1)公差d一定是由后項減前項所得,而不能用前項減后項來求;

  (2)對于數列{an},若an-a n-1=d(與n無關的數或字母),n≥2,n∈N*,則此數列是等差數列,d叫做公差.

  師:定義中的關鍵字是什么?(學生:在學習中經常遇到一些概念,能否抓住定義中的關鍵字,是能否正確地、深入的理解和掌握概念的重要條件,更是學好數學及其他學科的重要一環.因此教師:應該教會學生:如何深入理解一個概念,以培養學生:分析問題、認識問題的能力)

  生:從“第二項起”和“同一個常數”.

  師::很好!

  師:請同學們思考:數列(1)、(2)、(3)、(4)的通項公式存在嗎?如果存在,分別是什么?

  生:數列(1)通項公式為5n-5,數列(2)通項公式為5n+43,數列(3)通項公式為2.5n-15.5,….

  師:好,這位同學用上節課學到的知識求出了這幾個數列的通項公式,實質上這幾個通項公式有共同的特點,無論是在求解方法上,還是在所求的結果方面都存在許多共性,下面我們來共同思考.

  [合作探究]

  等差數列的通項公式

  師:等差數列定義是由一數列相鄰兩項之間關系而得到的,若一個等差數列{an}的首項是a1,公差是d,則據其定義可得什么?

  生:a2-a1=d,即a2=a1+d.

  師:對,繼續說下去!

  生:a3-a2=d,即a3=a2+d=a1+2d;

  a4-a3=d,即a4=a3+d=a1+3d;

  ……

  師:好!規律性的東西讓你找出來了,你能由此歸納出等差數列的通項公式嗎?

  生:由上述各式可以歸納出等差數列的通項公式是an=a1+(n-1)d.

  師:很好!這樣說來,若已知一數列為等差數列,則只要知其首項a1和公差d,便可求得其通項an了.需要說明的是:此公式只是等差數列通項公式的猜想,你能證明它嗎?

  生:前面已學過一種方法叫迭加法,我認為可以用.證明過程是這樣的:

  因為a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.將它們相加便可以得到:an=a1+(n-1)d.

  師:太好了!真是活學活用啊!這樣一來我們通過證明就可以放心使用這個通項公式了.

  [教師:精講]

  由上述關系還可得:am=a1+(m-1)d,

  即a1=am-(m-1)d.

  則an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,

  即等差數列的第二通項公式an=am+(n-m)d.(這是變通的通項公式)

  由此我們還可以得到.

  [例題剖析]

  【例1】(1)求等差數列8,5,2,…的第20項;

  (2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?

  師:這個等差數列的首項和公差分別是什么?你能求出它的第20項嗎?

  生:1這題太簡單了!首項和公差分別是a1=8,d=5-8=2-5=-3.又因為n=20,所以由等差數列的通項公式,得a20=8+(20-1)×(-3)=-49.

  師:好!下面我們來看看第(2)小題怎么做.

  生:2由a1=-5,d=-9-(-5)=-4得數列通項公式為an=-5-4(n-1).

  由題意可知,本題是要回答是否存在正整數n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是這個數列的第100項.

  師:剛才兩個同學將問題解決得很好,我們做本例的目的是為了熟悉公式,實質上通項公式就是an,a1,d,n組成的方程(獨立的量有三個).

  說明:(1)強調當數列{an}的項數n已知時,下標應是確切的數字;(2)實際上是求一個方程的正整數解的問題.這類問題學生:以前見得較少,可向學生:著重點出本問題的實質:要判斷-401是不是數列的項,關鍵是求出數列的通項公式an,判斷是否存在正整數n,使得an=-401成立.

  【例2】已知數列{an}的通項公式an=pn+q,其中p、q是常數,那么這個數列是否一定是等差數列?若是,首項與公差分別是什么?

  例題分析:

  師:由等差數列的定義,要判定{an}是不是等差數列,只要根據什么?

  生:只要看差an-an-1(n≥2)是不是一個與n無關的常數.

  師:說得對,請你來求解.

  生:當n≥2時,〔取數列{an}中的任意相鄰兩項an-1與an(n≥2)〕

  an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p為常數,

  所以我們說{an}是等差數列,首項a1=p+q,公差為p.

  師:這里要重點說明的是:

  (1)若p=0,則{an}是公差為0的等差數列,即為常數列q,q,q,….

  (2)若p≠0,則an是關于n的一次式,從圖象上看,表示數列的各點(n,an)均在一次函數y=px+q的圖象上,一次項的系數是公差p,直線在y軸上的截距為q.

  (3)數列{an}為等差數列的充要條件是其通項an=pn+q(p、q是常數),稱其為第3通項公式.課堂練習

  (1)求等差數列3,7,11,…的第4項與第10項.

  分析:根據所給數列的前3項求得首項和公差,寫出該數列的通項公式,從而求出所┣笙.

  解:根據題意可知a1=3,d=7-3=4.∴該數列的通項公式為an=3+(n-1)×4,即an=4n-1(n≥1,n∈N*).∴a4=4×4-1=15,a 10=4×10-1=39.

  評述:關鍵是求出通項公式.

  (2)求等差數列10,8,6,…的第20項.

  解:根據題意可知a1=10,d=8-10=-2.

  所以該數列的通項公式為an=10+(n-1)×(-2),即an=-2n+12,所以a20=-2×20+12=-28.

  評述:要求學生:注意解題步驟的規范性與準確性.

  (3)100是不是等差數列2,9,16,…的項?如果是,是第幾項?如果不是,請說明理由.

  分析:要想判斷一個數是否為某一個數列的其中一項,其關鍵是要看是否存在一個正整數n值,使得an等于這個數.

  解:根據題意可得a1=2,d=9-2=7.因而此數列通項公式為an=2+(n-1)×7=7n-5.

  令7n-5=100,解得n=15.所以100是這個數列的第15項.

  (4)-20是不是等差數列0,,-7,…的項?如果是,是第幾項?如果不是,請說明理由.

  解:由題意可知a1=0,,因而此數列的通項公式為.

  令,解得.因為沒有正整數解,所以-20不是這個數列的項.

  課堂小結

  師:(1)本節課你們學了什么?(2)要注意什么?(3)在生:活中能否運用?(讓學生:反思、歸納、總結,這樣來培養學生:的概括能力、表達能力)

  生:通過本課時的學習,首先要理解和掌握等差數列的定義及數學表達式a n-a n-1=d(n≥2);其次要會推導等差數列的通項公式an=a1+(n-1)d(n≥1).

數學等差數列教案 篇4

  [教學目標]

  1.知識與技能目標:掌握等差數列的概念;理解等差數列的通項公式的推導過程;了解等差數列的函數特征;能用等差數列的通項公式解決相應的一些問題。

  2.過程與方法目標:讓學生親身經歷“從特殊入手,研究對象的性質,再逐步擴大到一般”這一研究過程,培養他們觀察、分析、歸納、推理的能力。通過階梯性的強化練習,培養學生分析問題解決問題的能力。

  3.情感態度與價值觀目標:通過對等差數列的研究,培養學生主動探索、勇于發現的求索精神;使學生逐步養成細心觀察、認真分析、及時總結的好習慣。

  [教學重難點]

  1.教學重點:等差數列的概念的理解,通項公式的推導及應用。

  2.教學難點:

  (1)對等差數列中“等差”兩字的把握;

  (2)等差數列通項公式的推導。

  [教學過程]

  一.課題引入

  創設情境引入課題:(這節課我們將學習一類特殊的數列,下面我們看這樣一些例子)

  二、新課探究

  (一)等差數列的定義

  1、等差數列的定義

  如果一個數列從第二項起,每一項與前一項的差等于同一個常數,那么這個數列就叫等差數列。這個常數叫做等差數列的公差,通常用字母d來表示。

  (1)定義中的關健詞有哪些?

  (2)公差d是哪兩個數的差?

  (二)等差數列的通項公式

  探究1:等差數列的通項公式(求法一)

  如果等差數列首項是,公差是,那么這個等差數列如何表示?呢?

  根據等差數列的定義可得:

  因此等差數列的通項公式就是:,

  探究2:等差數列的通項公式(求法二)

  根據等差數列的定義可得:

  將以上-1個式子相加得等差數列的通項公式就是:,

  三、應用與探索

  例1、(1)求等差數列8,5,2,…,的第20項。

  (2)等差數列-5,-9,-13,…,的第幾項是–401?

  (2)、分析:要判斷-401是不是數列的項,關鍵是求出通項公式,并判斷是否存在正整數n,使得成立,實質上是要求方程的正整數解。

  例2、在等差數列中,已知=10,=31,求首項與公差d.

  解:由,得。

  在應用等差數列的通項公式an=a1+(n-1)d過程中,對an,a1,n,d這四個變量,知道其中三個量就可以求余下的一個量,這是一種方程的思想。

  鞏固練習

  1.等差數列{an}的前三項依次為a-6,-3a-5,-10a-1,則a=。

  2.一張梯子最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數列。求公差d。

  四、小結

  1.等差數列的通項公式:

  公差;

  2.等差數列的計算問題,通常知道其中三個量就可以利用通項公式an=a1+(n-1)d,求余下的一個量;

  3.判斷一個數列是否為等差數列只需看是否為常數即可;

  4.利用從特殊到一般的思維去發現數學系規律或解決數學問題.

  五、作業:

  1、必做題:課本第40頁習題2.2第1,3,5題

  2、選做題:如何以最快的速度求:1+2+3++100=

數學等差數列教案 篇5

  一、教材分析

  1、教學目標:

  A.理解并掌握等差數列的概念;了解等差數列的通項公式的推導過程及思想;

  B.培養學生觀察、分析、歸納、推理的能力;在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,培養學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

  C 通過對等差數列的研究,培養學生主動探索、勇于發現的求知精神;養成細心觀察、認真分析、善于總結的良好思維習慣。

  2、教學重點和難點

  ①等差數列的概念。

  ②等差數列的通項公式的推導過程及應用。用不完全歸納法推導等差數列的通項公式。

  二、教法分析

  采用啟發式、討論式以及講練結合的教學方法,通過問題激發學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題。

  三、教學程序

  本節課的教學過程由(一)復習引入(二)新課探究(三)應用例解(四)反饋練習(五)歸納小結(六)布置作業,六個教學環節構成。

  (一)復習引入:

  1.全國統一鞋號中成年女鞋的各種尺碼(表示鞋底長,單位是c)分別是

  21,22,23,24,25,

  2.某劇場前10排的座位數分別是:

  38,40,42,44,46,48,50,52,54,56。

  3.某長跑運動員7天里每天的訓練量(單位:)是:

  7500,8000,8500,9000,9500,10000,10500。

  共同特點:

  從第2項起,每一項與前一項的差都等于同一個常數。

  (二) 新課探究

  1、給出等差數列的概念:

  如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列, 這個常數叫做等差數列的公差,通常用字母d來表示。強調:

  ① “從第二項起”滿足條件;

  ②公差d一定是由后項減前項所得;

  ③公差可以是正數、負數,也可以是0。

  2、推導等差數列的通項公式

  若等差數列{an }的首項是 ,公差是d, 則據其定義可得:

  - =d 即: = +d

  – =d 即: = +d = +2d

  – =d 即: = +d = +3d

  進而歸納出等差數列的通項公式:

  = +(n-1)d

  此時指出:

  這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學生嚴謹的學習態度,在這里向學生介紹另外一種求數列通項公式的辦法------迭加法:

  – =d

  – =d

  – =d

  – =d

  將這(n-1)個等式左右兩邊分別相加,就可以得到 – = (n-1) d即 = +(n-1) d

  當n=1時,上面等式兩邊均為 ,即等式也是成立的,這表明當n∈ 時上面公式都成立,因此它就是等差數列{an }的通項公式。

  接著舉例說明:若一個等差數列{ }的首項是1,公差是2,得出這個數列的通項公式是: =1+(n-1)×2 , 即 =2n-1 以此來鞏固等差數列通項公式運用

  (三)應用舉例

  這一環節是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數列通項公式中的 、d、n、 這4個量之間的關系。當其中的部分量已知時,可根據該公式求出另一部分量。

  例1 (1)求等差數列8,5,2,…的第20項;

  (2)-401是不是等差數列-5,-9,-13,…的項?如果是,是第幾項?

  第二問實際上是求正整數解的問題,而關鍵是求出數列的通項公式

  例2 在等差數列{an}中,已知 =10, =31,求首項 與公差d。

  在前面例1的基礎上將例2當作練習作為對通項公式的鞏固

  例3 梯子的最高一級寬33c,最低一級寬110c,中間還有10級,各級的寬度成等差數列。計算中間各級的寬度。

  (四)反饋練習

  1、小節后的練習中的第1題和第2題(要求學生在規定時間內完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。

  2、若數列{ } 是等差數列,若 = ,(為常數)試證明:數列{ }是等差數列

  此題是對學生進行數列問題提高訓練,學習如何用定義證明數列問題同時強化了等差數列的概念。

  (五)歸納小結 (由學生總結這節課的收獲)

  1.等差數列的概念及數學表達式.

  強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數

  2.等差數列的通項公式 = +(n-1) d會知三求一

  (六) 布置作業

  必做題:課本P114 習題3.2第2,6 題

  選做題:已知等差數列{ }的首項 = -24,從第10項開始為正數,求公差d的取值范圍。(目的:通過分層作業,提高同學們的求知欲和滿足不同層次的學生需求)

  四、板書設計

  在板書中突出本節重點,將強調的地方如定義中,“從第二項起”及“同一常數”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現了精講多練的教學方法。

數學等差數列教案 篇6

  教學目標:

  1.知識與技能目標:理解等差數列的概念,了解等差數列的通項公式的推導過程及思想,掌握并會用等差數列的通項公式,初步引入“數學建模”的思想方法并能運用。

  2.過程與方法目標:培養學生觀察分析、猜想歸納、應用公式的能力;在領會函數與數列關系的前提下,滲透函數、方程的思想。

  3.情感態度與價值觀目標:通過對等差數列的研究培養學生主動探索、勇于發現的求知的精神;養成細心觀察、認真分析、善于總結的良好思維習慣。

  教學重點:

  等差數列的概念及通項公式。

  教學難點:

  (1)理解等差數列“等差”的特點及通項公式的含義。

  (2)等差數列的通項公式的推導過程及應用。

  教具:多媒體、實物投影儀

  教學過程:

  一、復習引入:

  1.回憶上一節課學習數列的定義,請舉出一個具體的例子。表示數列有哪幾種方法——列舉法、通項公式、遞推公式。我們這節課接著學習一類特殊的數列——等差數列。

  2.由生活中具體的數列實例引入

  (1).國際奧運會早期,撐桿跳高的記錄近似的由下表給出:

  你能看出這4次撐桿條跳世界記錄組成的數列,它的.各項之間有什么關系嗎?

  (2)某劇場前10排的座位數分別是:

  48、46、44、42、40、38、36、34、32、30

  引導學生觀察:數列①、②有何規律?

  引導學生發現這些數字相鄰兩個數字的差總是一個常數,數列①先左到右相差0.2,數列②從左到右相差-2。

  二.新課探究,推導公式

  1.等差數列的概念

  如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列,這個常數叫做等差數列的公差,通常用字母d來表示。

  強調以下幾點:

  ① “從第二項起”滿足條件;

  ②公差d一定是由后項減前項所得;

  ③每一項與它的前一項的差必須是同一個常數(強調“同一個常數” );

  所以上面的2、3都是等差數列,他們的公差分別為0.20,-2。

  在學生對等差數列有了直觀認識的基礎上,我將給出練習題,以鞏固知識的學習。

  [練習一]判斷下列各組數列中哪些是等差數列,哪些不是?如果是,寫出首項a1和公差d,如果不是,說明理由。

  1.3,5,7,…… √ d=2

  2.9,6,3,0,-3,…… √ d=-3

  3. 0,0,0,0,0,0,…….; √ d=0

  4. 1,2,3,2,3,4,……;×

  5. 1,0,1,0,1,……×

  在這個過程中我將采用邊引導邊提問的方法,以充分調動學生學習的積極性。

  2.等差數列通項公式

  如果等差數列{an}首項是a1,公差是d,那么根據等差數列的定義可得:

  a2 - a1 =d即:a2 =a1 +d

  a3 – a2 =d即:a3 =a2 +d = a1 +2d

  a4 – a3 =d即:a4 =a3 +d = a1 +3d

  ……

  猜想: a40 = a1 +39d

  進而歸納出等差數列的通項公式:an=a1+(n-1)d

  此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學生嚴謹的學習態度,在這里向學生介紹另外一種求數列通項公式的辦法------迭加法:

  n=a1+(n-1)d

  a2-a1=d

  a3-a2=d

  a4-a3 =d

  ……

  an –a(n-1) =d

  將這(n-1)個等式左右兩邊分別相加,就可以得到

  an-a1=(n-1)d

  即an=a1+(n-1)d (Ⅰ)

  當n=1時,(Ⅰ)也成立,所以對一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差數列{an}的通項公式。

  三.應用舉例

  例1求等差數列,12,8,4,0,…的第10項;20項;第30項;

  例2 -401是不是等差數列-5,-9,-13,…的項?如果是,是第幾項?

  四.反饋練習

  1.P293練習A組第1題和第2題(要求學生在規定時間內做完上述題目,教師提問)。目的:使學生熟悉通項公式對學生進行基本技能訓練。

  五.歸納小結提煉精華

  (由學生總結這節課的收獲)

  1.等差數列的概念及數學表達式.

  強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數

  2.等差數列的通項公式an= a1+(n-1) d會知三求一

  六.課后作業運用鞏固

  必做題:課本P284習題A組第3,4,5題

數學等差數列教案 篇7

  一、等差數列

  1、定義

  注:“從第二項起”及

  “同一常數”用紅色粉筆標注

  二、等差數列的通項公式

  (一)例題與練習

  通過練習2和3 引出兩個具體的等差數列,初步認識等差數列的特征,為后面的概念學習建立基礎,為學習新知識創設問題情境,激發學生的求知欲。由學生觀察兩個數列特點,引出等差數列的概念,對問題的總結又培養學生由具體到抽象、由特殊到一般的認知能力。

  (二)新課探究

  1、由引入自然的給出等差數列的概念:

  如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列, 這個常數叫做等差數列的公差,通常用字母d來表示。強調:

  ① “從第二項起”滿足條件; f

  ②公差d一定是由后項減前項所得;

  ③每一項與它的前一項的差必須是同一個常數(強調“同一個常數” );

  在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式:

  an+1—an=d (n≥1) ;h4z+0"6vG

  同時為了配合概念的理解,我找了5組數列,由學生判斷是否為等差數列,是等差數列的找出公差。

  1。 9 ,8,7,6,5,4,……;√ d=—1

  2。 0。70,0。71,0。72,0。73,0。74……;√ d=0。01

  3。 0,0,0,0,0,0,……。; √ d=0

  4。 1,2,3,2,3,4,……;×

  5。 1,0,1,0,1,……×

  其中第一個數列公差0,第三個數列公差=0

  由此強調:公差可以是正數、負數,也可以是0

  2、第二個重點部分為等差數列的通項公式

  在歸納等差數列通項公式中,我采用討論式的教學方法。給出等差數列的首項 ,公差d,由學生研究分組討論a4 的通項公式。通過總結a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養了學生的協作意識又化解了教學難點。

  若一等差數列{an }的首項是a1,公差是d,

  則據其定義可得:

  a2 — a1 =d 即: a2 =a1 +d

  a3 – a2 =d 即: a3 =a2 +d = a1 +2d

  a4 – a3 =d 即: a4 =a3 +d = a1 +3d

  ……

  猜想: a40 = a1 +39d

  進而歸納出等差數列的通項公式:

  an=a1+(n—1)d

  此時指出: 這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學生嚴謹的學習態度,在這里向學生介紹另外一種求數列通項公式的辦法——————迭加法:

  a2 – a1 =d

  a3 – a2 =d

  a4 – a3 =d

  ……

  an+1 – an=d

  將這(n—1)個等式左右兩邊分別相加,就可以得到 an– a1= (n—1) d即 an= a1+(n—1) d (1)0,第三個數列公差=0

  由此強調:公差可以是正數、負數,也可以是0

  2、第二個重點部分為等差數列的通項公式

  在歸納等差數列通項公式中,我采用討論式的教學方法,給出等差數列的首項,公差d,由學生研究分組討論a4的通項公式。通過總結a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養了學生的協作意識又化解了教學難點。

  若一等差數列{an }的首項是a1,公差是d,則據其定義可得:

  a2 - a1 =d 即: a2 =a1 +d

  a3 – a2 =d 即: a3 =a2 +d = a1 +2d

  a4 – a3 =d 即: a4 =a3 +d = a1 +3d

  ……

  猜想: a40 = a1 +39d,進而歸納出等差數列的通項公式:

  an=a1+(n-1)d

  此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學生嚴謹的學習態度,在這里向學生介紹另外一種求數列通項公式的辦法------迭加法:

  a2 – a1 =d

  a3 – a2 =d

  a4 – a3 =d

  ……

  an – an-1=d

  將這(n-1)個等式左右兩邊分別相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d (1)

  當n=1時,(1)也成立,

  所以對一切n∈N﹡,上面的公式都成立

  因此它就是等差數列{an}的通項公式。

  在迭加法的證明過程中,我采用啟發式教學方法。

  利用等差數列概念啟發學生寫出n-1個等式。

  對照已歸納出的通項公式啟發學生想出將n-1個等式相加。證出通項公式。

  在這里通過該知識點引入迭加法這一數學思想,逐步達到“注重方法,凸現思想” 的教學要求

  接著舉例說明:若一個等差數列{an}的首項是1,公差是2,得出這個數列的通項公式是:an=1+(n-1)×2 ,

  即an=2n-1 以此來鞏固等差數列通項公式運用

  同時要求畫出該數列圖象,由此說明等差數列是關于正整數n一次函數,其圖像是均勻排開的無窮多個孤立點。用函數的思想來研究數列,使數列的性質顯現得更加清楚。

  (三)應用舉例

  這一環節是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數列通項公式中的a1、d、n、an這4個量之間的關系。當其中的部分量已知時,可根據該公式求出另一部分量。

  例1 (1)求等差數列8,5,2,…的第20項;第30項;第40項

  (2)-401是不是等差數列-5,-9,-13,…的項?如果是,是第幾項?

  在第一問中我添加了計算第30項和第40項以加強鞏固等差數列通項公式;第二問實際上是求正整數解的問題,而關鍵是求出數列的通項公式an、

  例2 在等差數列{an}中,已知a5=10,a12 =31,求首項a1與公差d。

  在前面例1的基礎上將例2當作練習作為對通項公式的鞏固

  例3 是一個實際建模問題

  建造房屋時要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5、8米,若樓梯設計為等高的16級臺階,問每級臺階高為多少米?

  這道題我采用啟發式和討論式相結合的教學方法。啟發學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構成等差數列,引導學生將該實際問題轉化為數學模型------等差數列:(學生討論分析,分別演板,教師評析問題。問題可能出現在:項數學生認為是16項,應明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)。

  設置此題的目的:

  1、加強同學們對應用題的綜合分析能力,

  2、通過數學實際問題引出等差數列問題,激發了學生的興趣;

  3、再者通過數學實例展示了“從實際問題出發經抽象概括建立數學模型,最后還原說明實際問題的“數學建模”的數學思想方法

  (四)反饋練習

  1、小節后的練習中的第1題和第2題(要求學生在規定時間內完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。

  2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數列。計算中間各級的寬度。

  目的:對學生加強建模思想訓練。

  3、若數例{an} 是等差數列,若 bn = k an ,(k為常數)試證明:數列{bn}是等差數列

  此題是對學生進行數列問題提高訓練,學習如何用定義證明數列問題同時強化了等差數列的概念。

  (五)歸納小結(由學生總結這節課的收獲)

  1、等差數列的概念及數學表達式、

  強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數

  2、等差數列的通項公式 an= a1+(n-1) d會知三求一

  3、用“數學建模”思想方法解決實際問題

  (六)布置作業

  必做題:課本P114 習題3、2第2,6 題

  選做題:已知等差數列{an}的首項a1=-24,從第10項開始為正數,求公差d的取值范圍。

  (目的:通過分層作業,提高同學們的求知欲和滿足不同層次的學生需求)

  五、板書設計

  在板書中突出本節重點,將強調的地方如定義中,“從第二項起”及“同一常數”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現了精講多練的教學方法。

數學等差數列教案(通用7篇) 相關內容:
  • 等差數列的前n項和(精選7篇)

    教學目標1.掌握等差數列前 項和的公式,并能運用公式解決簡單的問題.(1)了解等差數列前 項和的定義,了解逆項相加的原理,理解等差數列前 項和公式推導的過程,記憶公式的兩種形式;(2)用方程思想認識等差數列前 項和的公式,利用公式...

  • 等差數列(精選14篇)

    教材:(一)目的:要求學生掌握等差數列的意義,通項公式及等差中項的有關概念、計算公式,并能用來解決有關問題。過程:一、引導觀察數列:4,5,6,7,8,9,10,…… 3,0,-3,-6,…… , , , ,…… 12,9,6,3,…… 特點:從...

  • 3.1 等差數列(精選15篇)

    教學目的:1.明確等差數列的定義,掌握等差數列的通項公式; 2.會解決知道 中的三個,求另外一個的問題 教學重點:等差數列的概念,等差數列的通項公式 教學難點:等差數列的性質 教學過程: 一、復習引入:(課件第一頁) 二、講解新課:...

  • 《等差數列》說課稿

    以下是初中數學《等差數列》的說課稿范文,僅供參考。希望大家喜歡!《等差數列》說課稿各位評委老師好,我是4號考生,我今天說課的題目是《等差數列》,我從教材分析,學情教法分析,學法分析,教學過程四方面對本節課的內容加以說明。...

  • 等差數列(第一課時)說課稿

    以下是初中數學等差數列(第一課時)說課稿范文,僅供參考。希望大家喜歡!等差數列(第一課時)說課稿各位評委老師好,我是4號考生,我今天說課的題目是《等差數列》,我從教材分析,學情教法分析,學法分析,教學過程四方面對本節課的內容加...

  • 高一數學《等差數列》說課稿模板

    下面是第一范文網小編整理的高一數學《等差數列》說課稿模板,希望對大家有所幫助。一、教材分析1、教材的地位和作用:數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。...

  • 人教版高一數學《等差數列》優秀說課稿模板

    一、教材分析1、教材的地位和作用:數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的極限等內容做好準備。...

  • 等差數列

    教材:(一)目的:要求學生掌握等差數列的意義,通項公式及等差中項的有關概念、計算公式,并能用來解決有關問題。過程:一、引導觀察數列:4,5,6,7,8,9,10,…… 3,0,-3,-6,…… , , , ,…… 12,9,6,3,…… 特點:從...

  • 等差數列

    教學目標 1.明確等差中的概念. 2.進一步熟練掌握等差數列的通項公式及推導公式 3.培養學生的應用意識. 教學重點 等差數列的性質的理解及應用 教學難點 靈活應用等差數列的定義及性質解決一些相關問題 教學方法 講練相結合 教具準備 投影片...

  • 等差數列

    教材:(二)目的:通過例題的講解,要求學生進一步認清等差數列的有關性質意義,并且能夠用定義與通項公式來判斷一個數列是否成等差數列。過程:一、復習:等差數列的定義,通項公式 二、例一 在等差數列 中, 為公差,若 且 求證:1°...

  • 等差數列與等比數列綜合問題(2)

    教學目標 1.熟練運用等差、等比數列的概念、通項公式、前n項和式以及有關性質,分析和解決等差、等比數列的綜合問題. 2.突出方程思想的應用,引導學生選擇簡捷合理的運算途徑,提高運算速度和運算能力.3.用類比思想加深對等差數列與等比數...

  • 等差數列的前n項和

    教學目標 1.把握等差數列前 項和的公式,并能運用公式解決簡單的問題. (1)了解等差數列前 項和的定義,了解逆項相加的原理,理解等差數列前 項和公式推導的過程,記憶公式的兩種形式; (2)用方程思想熟悉等差數列前 項和的公式,利用公式求 ;等...

  • 3.3 等差數列的前n項和(第二課時)

    教學目的:1.進一步熟練掌握等差數列的通項公式和前n項和公式. 2.了解等差數列的一些性質,并會用它們解決一些相關問題. 教學重點:熟練掌握等差數列的求和公式 教學難點:靈活應用求和公式解決問題 教學過程: 一、復習引入:首先回憶一...

  • 等差數列

    教學目標 1.理解等差數列的概念,把握等差數列的通項公式,并能運用通項公式解決簡單的問題. (1)了解公差的概念,明確一個數列是等差數列的限定條件,能根據定義判定一個數列是等差數列,了解等差中項的概念; (2)正確熟悉使用等差數列的各種表...

  • 3.1 等差數列(第一課時)

    教學目的:1.明確等差數列的定義,掌握等差數列的通項公式; 2.會解決知道 中的三個,求另外一個的問題 教學重點:等差數列的概念,等差數列的通項公式 教學難點:等差數列的性質 教學過程: 一、復習引入:(課件第一頁) 二、講解新課:...

  • 數學教案
主站蜘蛛池模板: 清新县| 曲阳县| 忻城县| 富平县| 丰城市| 克山县| 巴彦淖尔市| 苗栗县| 商城县| 嘉鱼县| 南靖县| 梨树县| 神农架林区| 铁岭市| 正蓝旗| 东明县| 洱源县| 朝阳区| 敖汉旗| 吴川市| 北碚区| 剑川县| 资阳市| 尼勒克县| 长乐市| 望城县| 买车| 张掖市| 中超| 秦安县| 麻江县| 沧州市| 雷山县| 论坛| 化州市| 金华市| 武定县| 老河口市| 西林县| 云南省| 荆州市|