2.3絕對值與相反數(1)
教學目標1、知識與技能:初步理解絕對值的概念,理解絕對值的幾何意義,會通過畫數軸的方法求一個數的絕對值。2、過程與方法:經歷將實際問題數學化的過程,感受數學與生活的關系,3、情感、態度與價值觀:經歷將實際問題數學化的過程,感受數學與生活的聯系。進一步滲透數形結合的思想,感知數學知識具有普遍的聯系性。教學重點:絕對值的概念. 通過畫數軸的方法求一個數的絕對值.教學難點:理解絕對值的幾何意義.教學過程:1.課間預習 小明的家在學校西邊3km處,小麗的家在學校東邊2km處,如下圖,我們可以把學校門前的大街想象為數軸,把學校 定為原點, 把小明、小麗兩家看成數軸上的兩點a、b.
-2
-1
2
1
0
a
-3
b `思考:1、a、b兩點離原點的距離各是多少? 2、a、b兩點離原點的距離與它們表示的數是正數還是負數有沒有關系? 3、在數軸上分別描出下列數所對應的點,并指出它們到原點的距離:
2.自主探究 我們把數軸上表示一個數的點與原點的距離,叫做這個數的絕對值。(absolute value) 例如上圖, 表示-3的點a到原點的距離是3,所以-3的絕對值是3, 問: 表示-2點到原點的距離是 ,所以-2的絕對值是 .表示2點到原點的距離是 ,所以2的絕對值是 .表示0到原點的距離是 ,所以0的絕對值是 .重點也也是難點注意:絕對值為正數的數有兩個。 例如:絕對值為5的數是+5和-5你做對了嗎+2.3和-2.3的絕對值都為2.3提問;絕對值為0的數是 『小試牛刀』1、數軸上與原點的距離為3.5的點有 個,它們分別表示有理數 和 。2、絕對值等于6的數是 。
0
1
2
3
4
5
-1
-2
-3
-4
-5
●
●
●
●
●
a
b
c
d
e例1、說出數軸上a、b、c、d、e各點所表示的數的絕對值 。 例2、求4、0與-3.5的絕對值.分析:解此題應畫數軸,在數軸上畫出表示4、0、-3.5的點,求出表示4、0、-3.5的點到原點的距離,即是它們的絕對值。 絕對值的符號: 4的絕對值記為|4|, 0的絕對值記為|0|, -3.5的絕對值記為|-3.5|,例2的結論就可以記為:|4|=4,|0|=0,|-3.5|=3.5 例3、比較下列各組數的絕對值的大小。 (1)2與-3 (2)-3與-6 例4、一小球在數軸上來回滾動,如果向右滾動1個單位長度,我們就用+1表示。現小球從表示-2的點處開始滾動,滾動過程記錄如下:-1.5,-3,+7,-3,+4.5。問小球最終停在何處?小球共滾動了多少個單位長度? 解答: