夜夜躁爽日日躁狠狠躁视频,亚洲国产精品无码久久一线,丫鬟露出双乳让老爷玩弄,第一次3q大战的经过和结果

首頁 > 教案下載 > 數學教案 > 初中數學教案 > 七年級數學教案 > 等腰三角形 —— 初中數學第一冊教案

等腰三角形 —— 初中數學第一冊教案

等腰三角形 —— 初中數學第一冊教案


9.3章等腰三角形教案

(一)、溫故知新,激發情趣:

1、軸對稱圖形的有關概念,什么樣的三角形叫做等腰三角形?

2、指出等腰三角形的腰、底邊、頂角、底角。

(首先教師提問了解前置知識掌握情況,學生動腦思考、口答。)

(二) 、構設懸念,創設情境:

3、一般三角形有哪些特征? (三條邊、三個內角、高、中線、角平分線)

4、等腰三角形除具有一般三角形的特征外,還有那些特殊特征?

(把問題3作為教學的出發點,激發學生的學習興趣。問題4給學生留下懸念。)

(三)、目標導向,自然引入:

本節課我們一起研究——9.3 等腰三角形   

(板書課題) 9.3 等腰三角形(了解本節課的學習內容)

(四)、設問質疑,探究嘗試:

結合問題4請同學們拿出準備好的不同規格的等腰三角形,與教師一起演示(模型)等腰三角形是軸對稱圖形的實驗,引導學生觀察實驗現象。

[問題]通過觀察,你發現了什么結論?

(讓學生由實驗或演示指出各自的發現,并加以引導,用規范的數學語言進行逐條歸納,最后得出等腰三角形的特征)

[結論]等腰三角形的兩個底角相等。     

(板書學生發現的結論)

等腰三角形特征1:等腰三角形的兩個底角相等

在△ ABC中,∵AB=AC( )

∴∠B=∠C( )

[方法]可由學生從多種途徑思考,縱橫聯想所學知識方法,為命題的證明打下基礎。

例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度數。

〔學生思考,教師分析,板書〕

練習思考:課本P84 練習2(等腰三角形的底角可以是直角或鈍角嗎?為什么?)

〔繼續觀察實驗紙片圖形〕(以下內容學生可能在前面實驗中就會提出)

[問題]紙片中的等腰三角形的對稱軸可能是我們以前學習過的什么線?

(通過設問、質疑、小組討論,歸納總結,培養學生概括數學問題的能力)

[引導學生觀察]折痕AD是等腰三角形的對稱軸,AD可能還是等腰三角形的什么線?

[學生發現]AD是等腰三角形的頂角平分線、底邊中線、底邊上的高.

[結論]等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合.簡稱為:“三線合一”。

等腰三角形特征2:

等腰三角形的頂角平分線、底邊上的中線和高線互相重合(三線合一)

(出示小黑板)

[填空]根據等腰三角形特征的推論,在△ABC中

(1)∵AB=AC,AD⊥BC,

∴∠_=∠_,_=_;

(2)∵AB=AC,AD是中線,

∴∠_=∠_,_⊥_;

(3)∵AB=AC,AD是角平分線,

∴_⊥_,_=_

通過直觀模具演示,引出推論2,并出示小黑板[填空]、強調“三線合一”的運用方法。使學生留下深刻印象,并通過[填空]了解三線合一的運用方法。

強調“三線合一”特征中的三線段前的定語的重要性,可讓學生實際畫圖驗證。

(五)、啟發誘導,初步運用:

例2:如圖,在△ABC中,AB=AC,D是BC邊上的中點,

∠B=30°,求∠1和∠ADC的度數。

課堂練習:

(1)P85練習3

(2)例3已知:如圖,房屋的頂角∠BAC=100°,過屋頂A的立柱AD⊥BC、屋椽AB=AC.求頂架上∠B、∠C、∠BAD、∠CAD的度數.

(這是一道幾何計算題,要使學生加深對本課內容的應用,引導學生寫出解題過程)

(六)、歸納小結,強化思想:

(1)敘述等腰三角形的特征及其應用;

(2)利用等腰三角形的特征可證明:兩角相等,兩線段相等,兩直線互相垂直。

(3) 聯想方法要經常運用,對今后解題大有裨益。

(七)、布置作業 ,引導預習:

P86 習題9.3   1、3、4   預習課本:P85 等腰三角形

課后思考題:等腰三角形兩腰上的中線(高線)是否相等?為什么?

9.3章等腰三角形教案

(一)、溫故知新,激發情趣:

1、軸對稱圖形的有關概念,什么樣的三角形叫做等腰三角形?

2、指出等腰三角形的腰、底邊、頂角、底角。

(首先教師提問了解前置知識掌握情況,學生動腦思考、口答。)

(二) 、構設懸念,創設情境:

3、一般三角形有哪些特征? (三條邊、三個內角、高、中線、角平分線)

4、等腰三角形除具有一般三角形的特征外,還有那些特殊特征?

(把問題3作為教學的出發點,激發學生的學習興趣。問題4給學生留下懸念。)

(三)、目標導向,自然引入:

本節課我們一起研究——9.3 等腰三角形   

(板書課題) 9.3 等腰三角形(了解本節課的學習內容)

(四)、設問質疑,探究嘗試:

結合問題4請同學們拿出準備好的不同規格的等腰三角形,與教師一起演示(模型)等腰三角形是軸對稱圖形的實驗,引導學生觀察實驗現象。

[問題]通過觀察,你發現了什么結論?

(讓學生由實驗或演示指出各自的發現,并加以引導,用規范的數學語言進行逐條歸納,最后得出等腰三角形的特征)

[結論]等腰三角形的兩個底角相等。     

(板書學生發現的結論)

等腰三角形特征1:等腰三角形的兩個底角相等

在△ ABC中,∵AB=AC( )

∴∠B=∠C( )

[方法]可由學生從多種途徑思考,縱橫聯想所學知識方法,為命題的證明打下基礎。

例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度數。

〔學生思考,教師分析,板書〕

練習思考:課本P84 練習2(等腰三角形的底角可以是直角或鈍角嗎?為什么?)

〔繼續觀察實驗紙片圖形〕(以下內容學生可能在前面實驗中就會提出)

[問題]紙片中的等腰三角形的對稱軸可能是我們以前學習過的什么線?

(通過設問、質疑、小組討論,歸納總結,培養學生概括數學問題的能力)

[引導學生觀察]折痕AD是等腰三角形的對稱軸,AD可能還是等腰三角形的什么線?

[學生發現]AD是等腰三角形的頂角平分線、底邊中線、底邊上的高.

[結論]等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合.簡稱為:“三線合一”。

等腰三角形特征2:

等腰三角形的頂角平分線、底邊上的中線和高線互相重合(三線合一)

(出示小黑板)

[填空]根據等腰三角形特征的推論,在△ABC中

(1)∵AB=AC,AD⊥BC,

∴∠_=∠_,_=_;

(2)∵AB=AC,AD是中線,

∴∠_=∠_,_⊥_;

(3)∵AB=AC,AD是角平分線,

∴_⊥_,_=_

通過直觀模具演示,引出推論2,并出示小黑板[填空]、強調“三線合一”的運用方法。使學生留下深刻印象,并通過[填空]了解三線合一的運用方法。

強調“三線合一”特征中的三線段前的定語的重要性,可讓學生實際畫圖驗證。

(五)、啟發誘導,初步運用:

例2:如圖,在△ABC中,AB=AC,D是BC邊上的中點,

∠B=30°,求∠1和∠ADC的度數。

課堂練習:

(1)P85練習3

(2)例3已知:如圖,房屋的頂角∠BAC=100°,過屋頂A的立柱AD⊥BC、屋椽AB=AC.求頂架上∠B、∠C、∠BAD、∠CAD的度數.

(這是一道幾何計算題,要使學生加深對本課內容的應用,引導學生寫出解題過程)

(六)、歸納小結,強化思想:

(1)敘述等腰三角形的特征及其應用;

(2)利用等腰三角形的特征可證明:兩角相等,兩線段相等,兩直線互相垂直。

(3) 聯想方法要經常運用,對今后解題大有裨益。

(七)、布置作業 ,引導預習:

P86 習題9.3   1、3、4   預習課本:P85 等腰三角形

課后思考題:等腰三角形兩腰上的中線(高線)是否相等?為什么?

等腰三角形 —— 初中數學第一冊教案 相關內容:
  • 等腰三角形(通用13篇)

    14.3 課時安排4課時從容說課前面兩節中,通過對生活中的軸對稱現象的認識,進一步對軸對稱的性質作了研究,還探討了軸對稱變換,能夠作出一些簡單的平面圖形關于一條直線的對稱圖形,所以學生對這些結論已經有所了解.本節在我們已學過的知...

  • 14.3.1.1 等腰三角形(通用12篇)

    §14.3.1.1 (二)教學目標1、理解并掌握等腰三角形的判定定理及推論2、能利用其性質與判定證明線段或角的相等關系.教學重點等腰三角形的判定定理及推論的運用教學難點正確區分等腰三角形的判定與性質.能夠利用等腰三角形的判定定理證明線...

  • 等腰三角形說課稿

    說課就是教師口頭表述具體課題的教學設想及其理論依據,也就是授課教師在備課的基礎上,面對同行或教研人員,講述自己的 教學設計,然后由聽者評說,達到互相交流,共同提高的目的的一種教學研究和師資培訓的活動。...

  • 14.3等腰三角形

    教學目標:知識技能了解等腰三角形的性質,掌握等腰三角形的性質定理及推論,會用定理及推論解決簡單問題. 數學思考培養學生探究思維、邏輯思維能力,探索引輔助線的規律. 情感態度與價值觀:滲透"實踐--理論--實踐"的辯證唯物主義思想,...

  • 等腰三角形

    §14.3.1.1 (二)教學目標1、理解并掌握等腰三角形的判定定理及推論2、能利用其性質與判定證明線段或角的相等關系.教學重點等腰三角形的判定定理及推論的運用教學難點正確區分等腰三角形的判定與性質.能夠利用等腰三角形的判定定理證明線...

  • 第15章《軸對稱圖形和等腰三角形》期末總復習資料

    本章需要理解掌握的知識點有:一、軸對稱圖形和軸對稱1、軸對稱圖形是一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合。2、軸對稱是指兩個圖形沿一條直線對折,直線兩旁的兩個圖形能夠完全重合。...

  • 八年級上冊《等腰三角形的軸對稱性》2導學設計

    2.5等腰三角形的軸對稱性(2)教學目標1.掌握等腰三角形的判定定理.2.知道等邊三角形的性質以及等邊三角形的判定定理.3.經歷折紙、畫圖、觀察、推理等操作活動的合理性進行證明的過程,不斷感受合情推理和演繹推理都是人們正確認識事物的...

  • 等腰三角形

    14.3 課時安排4課時從容說課前面兩節中,通過對生活中的軸對稱現象的認識,進一步對軸對稱的性質作了研究,還探討了軸對稱變換,能夠作出一些簡單的平面圖形關于一條直線的對稱圖形,所以學生對這些結論已經有所了解.本節在我們已學過的知...

  • §14.3.1.1  等腰三角形

    §14.3.1.1 等腰三角形 教學目標 1.等腰三角形的概念. 2.等腰三角形的性質. 3.等腰三角形的概念及性質的應用. 教學重點 1.等腰三角形的概念及性質. 2.等腰三角形性質的應用. 教學難點 等腰三角形三線合一的性質的理解及其應用. 教學過程...

  • 等腰三角形和等邊三角形 教案

    教學內容:教科書p30例題,p31-32“想想做做”“你知道嗎?”(等腰三角形和等邊三角形)教學目標:1、 讓學生在實際操作中認識等腰三角形和等邊三角形,知道等腰三角形邊和角的名稱,知道等腰三角形兩個底角相等,等邊三角形三個內角相等...

  • 其他教案-等腰三角形

    3章等腰三角形教案(一)、溫故知新,激發情趣: 1、軸對稱圖形的有關概念,什么樣的三角形叫做等腰三角形?2、指出等腰三角形的腰、底邊、頂角、底角。(首先教師提問了解前置知識掌握情況,學生動腦思考、口答。...

  • 等腰三角形定理

    一、說教材分析1、本課內容在初中數學教學中起著比較重要的作用,它是對三角形的性質的呈現。通過等腰三角形的性質反映在一個三角形中等邊對等角,等角對等邊的邊角關系,并且對軸對稱圖形性質的直觀反映(三線合一)。...

  • 數學教案-等腰三角形

    9.3章等腰三角形教案(一)、溫故知新,激發情趣:1、軸對稱圖形的有關概念,什么樣的三角形叫做等腰三角形?2、指出等腰三角形的腰、底邊、頂角、底角。(首先教師提問了解前置知識掌握情況,學生動腦思考、口答。...

  • 第一冊等腰三角形

    (一)、溫故知新,激發情趣:1、軸對稱圖形的有關概念,什么樣的三角形叫做等腰三角形?2、指出等腰三角形的腰、底邊、頂角、底角。(首先教師提問了解前置知識掌握情況,學生動腦思考、口答。...

  • 等腰三角形的性質(通用13篇)

    知識結構重點與難點分析:本節內容的重點是及其推論。等腰三角形兩底角相等(等邊對等角)是證明同一三角形中兩角相等的重要依據;而在推論中提到的等腰三角形底邊上的高、中線及頂角平分線三線合一這條重要性質也是證明兩線段相等,兩個...

  • 七年級數學教案
主站蜘蛛池模板: 定结县| 邹平县| 视频| 黄山市| 湘潭市| 建瓯市| 双江| 资中县| 桂东县| 方正县| 金秀| 淮北市| 清河县| 康定县| 滨海县| 永胜县| 菏泽市| 陆河县| 化德县| 涟源市| 新绛县| 郓城县| 钟祥市| 托里县| 常州市| 五指山市| 饶阳县| 南乐县| 西和县| 崇文区| 广昌县| 东兰县| 广元市| 永宁县| 泗水县| 繁昌县| 宜宾市| 台东县| 房山区| 堆龙德庆县| 垫江县|