夜夜躁爽日日躁狠狠躁视频,亚洲国产精品无码久久一线,丫鬟露出双乳让老爷玩弄,第一次3q大战的经过和结果

首頁 > 教案下載 > 數學教案 > 初中數學教案 > 七年級數學教案 > 對數函數的應用 教案 —— 初中數學第一冊教案

對數函數的應用 教案 —— 初中數學第一冊教案

對數函數的應用 教案 —— 初中數學第一冊教案


對數函數的應用 教案
 
教學目標 :①掌握對數函數的性質。

②應用對數函數的性質可以解決:對數的大小比較,求復

合函數的定義域、值 域及單調性。

③ 注重函數思想、等價轉化、分類討論等思想的滲透,提高

解題能力。

教學重點與難點:對數函數的性質的應用。

教學過程 設計:

⒈復習提問:對數函數的概念及性質。

⒉開始正課

1 比較數的大小

例 1 比較下列各組數的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

師:請同學們觀察一下⑴中這兩個對數有何特征?

生:這兩個對數底相等。

師:那么對于兩個底相等的對數如何比大小?

生:可構造一個以a為底的對數函數,用對數函數的單調性比大小。

師:對,請敘述一下這道題的解題過程。

生:對數函數的單調性取決于底的大小:當0<a<1時,函數y=logax單

調遞減,所以loga5.1>loga5.9 ;當a>1時,函數y=logax單調遞

增,所以loga5.1<loga5.9。

板書:

解:Ⅰ)當0<a<1時,函數y=logax在(0,+∞)上是減函數,

∵5.1<5.9 ∴loga5.1>loga5.9

Ⅱ)當a>1時,函數y=logax在(0,+∞)上是增函數,

∵5.1<5.9 ∴loga5.1<loga5.9

師:請同學們觀察一下⑵中這三個對數有何特征?

生:這三個對數底、真數都不相等。

師:那么對于這三個對數如何比大小?

生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,

log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板書:略。

師:比較對數值的大小常用方法:①構造對數函數,直接利用對數函

數 的單調性比大小,②借用“中間量”間接比大小,③利用對數

函數圖象的位置關系來比大小。

2 函數的定義域, 值 域及單調性。

例 2 ⑴求函數y=的定義域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

師:如何來求⑴中函數的定義域?(提示:求函數的定義域,就是要

使函數有意義。若函數中含有分母,分母不為零;有偶次根式,

被開方式大于或等于零;若函數中有對數的形式,則真數大于

零,如果函數中同時出現以上幾種情況,就要全部考慮進去,求

它們共同作用的結果。)

生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數x>0。

板書:

解:∵ 2x-1≠0 x≠0.5

log0.8x-1≥0 , x≤0.8

x>0 x>0

∴x(0,0.5)∪(0.5,0.8〕

師:接下來我們一起來解這個不等式。

分析:要解這個不等式,首先要使這個不等式有意義,即真數大于零,

再根據對數函數的單調性求解。

師:請你寫一下這道題的解題過程。

生:<板書>

解: x2+2x-3>0 x<-3 或 x>1

(3x+3)>0 , x>-1

x2+2x-3<(3x+3) -2<x<3

不等式的解為:1<x<3

例 3 求下列函數的值域和單調區間。

⑴y=log0.5(x- x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

師:求例3中函數的的值域和單調區間要用及復合函數的思想方法。

下面請同學們來解⑴。

生:此函數可看作是由y=log0.5u, u=x- x2復合而成。

板書:

解:⑴∵u=x- x2>0, ∴0<x<1

u=x- x2=-(x-0.5)2+0.25, ∴0<u≤0.25

∴y=log0.5u≥log0.50.25=2

∴y≥2

x x(0,0.5] x[0.5,1)

u=x- x2

 y=log0.5u

y=log0.5(x- x2)

函數y=log0.5(x- x2)的單調遞減區間(0,0.5],單調遞 增區間[0.5,1)

注:研究任何函數的性質時,都應該首先保證這個函數有意義,否則

函數都不存在,性質就無從談起。

師:在⑴的基礎上,我們一起來解⑵。請同學們觀察一下⑴與⑵有什

么區別?

生:⑴的底數是常值,⑵的底數是字母。

師:那么⑵如何來解?

生:只要對a進行分類討論,做法與⑴類似。

板書:略。

⒊小結

這堂課主要講解如何應用對數函數的性質解決一些問題,希望能

通過這堂課使同學們對等價轉化、分類討論等思想加以應用,提高解題能力。

⒋作業 

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數)

⑵已知函數y=loga(x2-2x),(a>0,a≠1)

①求它的單調區間;②當0<a<1時,分別在各單調區間上求它的反函數。

⑶已知函數y=loga (a>0, b>0, 且 a≠1)

①求它的定義域;②討論它的奇偶性; ③討論它的單調性。

⑷已知函數y=loga(ax-1) (a>0,a≠1),

①求它的定義域;②當x為何值時,函數值大于1;③討論它的

單調性。

5.課堂教學設計說明

這節課是安排為習題課,主要利用對數函數的性質解決一些問題,整個一堂課分兩個部分:一 .比較數的大小,想通過這一部分的練習,

培養同學們構造函數的思想和分類討論、數形結合的思想。二.函數的定義域, 值 域及單調性,想通過這一部分的練習,能使同學們重視求函數的定義域。因為學生在求函數的值域和單調區間時,往往不考慮函數的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學生做到想法正確,步驟清晰。為了調動學生的積極性,突出學生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學生獨立完成。但是,每一道題的解題過程,老師都應該給以板書,這樣既讓學生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結,以使好學生掌握地更完善,較差的學生也能夠跟上。

對數函數的應用 教案
 
教學目標 :①掌握對數函數的性質。

②應用對數函數的性質可以解決:對數的大小比較,求復

合函數的定義域、值 域及單調性。

③ 注重函數思想、等價轉化、分類討論等思想的滲透,提高

解題能力。

教學重點與難點:對數函數的性質的應用。

教學過程 設計:

⒈復習提問:對數函數的概念及性質。

⒉開始正課

1 比較數的大小

例 1 比較下列各組數的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

師:請同學們觀察一下⑴中這兩個對數有何特征?

生:這兩個對數底相等。

師:那么對于兩個底相等的對數如何比大小?

生:可構造一個以a為底的對數函數,用對數函數的單調性比大小。

師:對,請敘述一下這道題的解題過程。

生:對數函數的單調性取決于底的大小:當0<a<1時,函數y=logax單

調遞減,所以loga5.1>loga5.9 ;當a>1時,函數y=logax單調遞

增,所以loga5.1<loga5.9。

板書:

解:Ⅰ)當0<a<1時,函數y=logax在(0,+∞)上是減函數,

∵5.1<5.9 ∴loga5.1>loga5.9

Ⅱ)當a>1時,函數y=logax在(0,+∞)上是增函數,

∵5.1<5.9 ∴loga5.1<loga5.9

師:請同學們觀察一下⑵中這三個對數有何特征?

生:這三個對數底、真數都不相等。

師:那么對于這三個對數如何比大小?

生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,

log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板書:略。

師:比較對數值的大小常用方法:①構造對數函數,直接利用對數函

數 的單調性比大小,②借用“中間量”間接比大小,③利用對數

函數圖象的位置關系來比大小。

2 函數的定義域, 值 域及單調性。

例 2 ⑴求函數y=的定義域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

師:如何來求⑴中函數的定義域?(提示:求函數的定義域,就是要

使函數有意義。若函數中含有分母,分母不為零;有偶次根式,

被開方式大于或等于零;若函數中有對數的形式,則真數大于

零,如果函數中同時出現以上幾種情況,就要全部考慮進去,求

它們共同作用的結果。)

生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數x>0。

板書:

解:∵ 2x-1≠0 x≠0.5

log0.8x-1≥0 , x≤0.8

x>0 x>0

∴x(0,0.5)∪(0.5,0.8〕

師:接下來我們一起來解這個不等式。

分析:要解這個不等式,首先要使這個不等式有意義,即真數大于零,

再根據對數函數的單調性求解。

師:請你寫一下這道題的解題過程。

生:<板書>

解: x2+2x-3>0 x<-3 或 x>1

(3x+3)>0 , x>-1

x2+2x-3<(3x+3) -2<x<3

不等式的解為:1<x<3

例 3 求下列函數的值域和單調區間。

⑴y=log0.5(x- x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

師:求例3中函數的的值域和單調區間要用及復合函數的思想方法。

下面請同學們來解⑴。

生:此函數可看作是由y=log0.5u, u=x- x2復合而成。

板書:

解:⑴∵u=x- x2>0, ∴0<x<1

u=x- x2=-(x-0.5)2+0.25, ∴0<u≤0.25

∴y=log0.5u≥log0.50.25=2

∴y≥2

x x(0,0.5] x[0.5,1)

u=x- x2

 y=log0.5u

y=log0.5(x- x2)

函數y=log0.5(x- x2)的單調遞減區間(0,0.5],單調遞 增區間[0.5,1)

注:研究任何函數的性質時,都應該首先保證這個函數有意義,否則

函數都不存在,性質就無從談起。

師:在⑴的基礎上,我們一起來解⑵。請同學們觀察一下⑴與⑵有什

么區別?

生:⑴的底數是常值,⑵的底數是字母。

師:那么⑵如何來解?

生:只要對a進行分類討論,做法與⑴類似。

板書:略。

⒊小結

這堂課主要講解如何應用對數函數的性質解決一些問題,希望能

通過這堂課使同學們對等價轉化、分類討論等思想加以應用,提高解題能力。

⒋作業 

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數)

⑵已知函數y=loga(x2-2x),(a>0,a≠1)

①求它的單調區間;②當0<a<1時,分別在各單調區間上求它的反函數。

⑶已知函數y=loga (a>0, b>0, 且 a≠1)

①求它的定義域;②討論它的奇偶性; ③討論它的單調性。

⑷已知函數y=loga(ax-1) (a>0,a≠1),

①求它的定義域;②當x為何值時,函數值大于1;③討論它的

單調性。

5.課堂教學設計說明

這節課是安排為習題課,主要利用對數函數的性質解決一些問題,整個一堂課分兩個部分:一 .比較數的大小,想通過這一部分的練習,

培養同學們構造函數的思想和分類討論、數形結合的思想。二.函數的定義域, 值 域及單調性,想通過這一部分的練習,能使同學們重視求函數的定義域。因為學生在求函數的值域和單調區間時,往往不考慮函數的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學生做到想法正確,步驟清晰。為了調動學生的積極性,突出學生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學生獨立完成。但是,每一道題的解題過程,老師都應該給以板書,這樣既讓學生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結,以使好學生掌握地更完善,較差的學生也能夠跟上。

對數函數的應用 教案 —— 初中數學第一冊教案 相關內容:
  • 函數的應用舉例

    教學目標 1. 能夠運用函數的性質,指數函數,對數函數的性質解決某些簡單的實際問題. (1) 能通過閱讀理解讀懂題目中文字敘述所反映的實際背景,領悟其中的數學本,弄清題中出現的量及其數學含義. (2) 能根據實際問題的具體背景,進行數學...

  • 函數的應用舉例

    教學目標 1. 能夠運用函數的性質,指數函數,對數函數的性質解決某些簡單的實際問題. (1) 能通過閱讀理解讀懂題目中文字敘述所反映的實際背景,領悟其中的數學本,弄清題中出現的量及其數學含義. (2) 能根據實際問題的具體背景,進行數學...

  • 函數的應用舉例

    教學目標 1. 能夠運用函數的性質,指數函數,對數函數的性質解決某些簡單的實際問題. (1) 能通過閱讀理解讀懂題目中文字敘述所反映的實際背景,領悟其中的數學本,弄清題中出現的量及其數學含義. (2) 能根據實際問題的具體背景,進行數學...

  • 數學教案-對數函數的應用 教案

    對數函數的應用 教案 教學目標:①掌握對數函數的性質。 ②應用對數函數的性質可以解決:對數的大小比較,求復 合函數的定義域、值 域及單調性。 ③ 注重函數思想、等價轉化、分類討論等思想的滲透,提高 解題能力。...

  • 第一冊對數函數的應用

    教學目標:①掌握對數函數的性質。 ②應用對數函數的性質可以解決:對數的大小比較,求復 合函數的定義域、值 域及單調性。 ③ 注重函數思想、等價轉化、分類討論等思想的滲透,提高 解題能力。教學重點與難點:對數函數的性質的應用。...

  • 一次函數的應用(精選2篇)

    課題 一次函數的應用教學內容:知識與技能:鞏固所學的一次函數的定義、圖象和性質.能夠用一次函數的知識解決實際問題.過程與方法:掌握用待定系數法求函數解析式的一般方法.情感態度與價值觀:繼續滲透數形結合的數學思想.教學重點和難點...

  • 初中數學《反比例函數的應用》說課稿范文(精選2篇)

    一.說教材《反比例函數的應用》是蘇科版八年級下冊第九章第三節的課題,是在前面學習了反比例函數、反比例函數的圖象和性質的基礎上的一節應用課。這一節的內容符合新課程理念,課程要面向生活世界和社會實踐。...

  • 初中數學《反比例函數的應用》說課稿范文

    一.說教材《反比例函數的應用》是蘇科版八年級下冊第九章第三節的課題,是在前面學習了反比例函數、反比例函數的圖象和性質的基礎上的一節應用課。這一節的內容符合新課程理念,課程要面向生活世界和社會實踐。...

  • 初中數學《反比例函數的應用》說課稿范文

    一.說教材《反比例函數的應用》是蘇科版八年級下冊第九章第三節的課題,是在前面學習了反比例函數、反比例函數的圖象和性質的基礎上的一節應用課。這一節的內容符合新課程理念,課程要面向生活世界和社會實踐。...

  • 一次函數的應用

    課題 一次函數的應用教學內容:知識與技能:鞏固所學的一次函數的定義、圖象和性質.能夠用一次函數的知識解決實際問題.過程與方法:掌握用待定系數法求函數解析式的一般方法.情感態度與價值觀:繼續滲透數形結合的數學思想.教學重點和難點...

  • 九年級上冊《二次函數的應用》導學案

    第 49 課時 6.4二次函數的應用(1)一、自主嘗試預習課本p25—26頁,嘗試解決下列問題:問題1:某種糧大戶去年種植優質水稻360畝,今年計劃多承租100—150畝稻田.預計原360畝稻田今年每畝可收益440元,新增稻田x今年每畝的收益為元.試問:...

  • 二次函數的應用第二課時 教案

    2.4二次函數的應用(2) 教學目標: 1、繼續經歷利用二次函數解決實際最值問題的過程。 2、會綜合運用二次函數和其他數學知識解決如有關距離等函數最值問題。 3、發展應用數學解決問題的能力,體會數學與生活的密切聯系和數學的應用價值。...

  • 一次函數的應用教學反思

    本節課的設計,力求體現新課程改革的理念,結合學生自主探究的時間,為學生營造寬松、和諧的氛圍,讓學生學得更主動、更輕松,力求在探索知識的過程中,培養學生的探索能力和創新能力,激發學生學習的積極性。...

  • 初中數學軸對稱教案(精選3篇)

    教學目標:1、聯系生活中的具體物體,通過觀察和動手操作,使學生初步體會生活中的對稱現象,認識軸對稱圖形的.一些基本特征。2、使學生能根據自己對軸對稱圖形的初步認識,在一組實物圖案和平面圖形中識別出軸對稱圖形,能用一些方法做出...

  • 初中數學北師大教案(通用2篇)

    一、教材分析同底數冪的乘法是北師大版初中數學七年級(下)第一章整式的乘除第一節的內容。在此之前,學生已經掌握了用字母表示數的技能,會判斷同類項、合并同類項,同時在學習了有理數乘方運算后,知道了求n個相同數a的積的運算叫做乘...

  • 七年級數學教案
主站蜘蛛池模板: 左云县| 孝感市| 安顺市| 济南市| 颍上县| 北川| 上饶县| 类乌齐县| 通辽市| 明光市| 石门县| 白朗县| 玛多县| 且末县| 衡水市| 定州市| 崇礼县| 台东县| 潞城市| 拜城县| 名山县| 松潘县| 合山市| 黄梅县| 蓬莱市| 缙云县| 常熟市| 安国市| 卓尼县| 临潭县| 垦利县| 特克斯县| 时尚| 安塞县| 万州区| 利津县| 孟村| 孟州市| 江都市| 荃湾区| 宁都县|