解直角三角形
教學(xué)建議1.知識結(jié)構(gòu):
本小節(jié)主要學(xué)習(xí)解直角三角形的概念,直角三角形中除直角外的五個元素之間的關(guān)系以及直角三角形的解法.
2.重點和難點分析:
教學(xué)重點和難點:直角三角形的解法.
本節(jié)的重點和難點是直角三角形的解法.為了使學(xué)生熟練把握直角三角形的解法,首先要使學(xué)生知道什么叫做解直角三角形,直角三角形中三邊之間的關(guān)系,兩銳角之間的關(guān)系,邊角之間的關(guān)系.正確選用這些關(guān)系,是正確、迅速地解直角三角形的關(guān)鍵.
3. 深刻熟悉銳角三角函數(shù)的定義,理解三角函數(shù)的表達式向方程的轉(zhuǎn)化.
銳角三角函數(shù)的定義:
實際上分別給了三個量的關(guān)系:a、b、c是邊的長、和是由用不同方式來決定的三角函數(shù)值,它們都是實數(shù),但它與代數(shù)式的不同點在于三角函數(shù)的值是有一個銳角的數(shù)值參與其中.
當這三個實數(shù)中有兩個是已知數(shù)時,它就轉(zhuǎn)化為一個一元方程,解這個方程,就求出了一個直角三角形的未知的元素.
如:已知直角三角形abc中,,求bc邊的長.
畫出圖形,可知邊ac,bc和三個元素的關(guān)系是正切函數(shù)(或余切函數(shù))的定義給出的,所以有等式
,
由于,它實際上已經(jīng)轉(zhuǎn)化了以bc為未知數(shù)的代數(shù)方程,解這個方程,得
.
即得bc的長為.
又如,已知直角三角形斜邊的長為35.42cm,一條直角邊的長29.17cm,求另一條邊所對的銳角的大小.
畫出圖形,可設(shè)中,,于是,求的大小時,涉及的三個元素的關(guān)系是
也就是
這時,就把以為未知數(shù)的代數(shù)方程轉(zhuǎn)化為了以為未知數(shù)的方程,經(jīng)查三角函數(shù)表,得
.
由此看來,表達三角函數(shù)的定義的4個等式,可以轉(zhuǎn)化為求邊長的方程,也可以轉(zhuǎn)化為求角的方程,所以成為解三角形的重要工具.
4. 直角三角形的解法可以歸納為以下4種,列表如下:
5. 注重非直角三角形問題向直角三角形問題的轉(zhuǎn)化
由上述(3)可以看到,只要已知條件適當,所有的直角三角形都是可解的.值得注重的是,它不僅使直角三角形的計算問題得到徹底的解決,而且給非直角三角形圖形問題的解決鋪平了道路.不難想到,只要能把非直角三角形的圖形問題轉(zhuǎn)化為直角三角形問題,就可以通過解直角三角形而獲得解決.請看下例.
例如,在銳角三角形abc中,,求這個三角形的未知的邊和未知的角(如圖)
這是一個銳角三角形的解法的問題,我們只需作出bc邊上的高(想一想:作其它邊上的高為什么不好.),問題就轉(zhuǎn)化為兩個解直角三角形的問題.
在rt中,有兩個獨立的條件,具備求解的條件,而在rt中,只有已知條件,暫時不具備求解的條件,但高ad可由解時求出,那時,它也將轉(zhuǎn)化為可解的直角三角形,問題就迎刃而解了.解法如下:
解:作于d,在rt中,有
;
又,在rt中,有