夜夜躁爽日日躁狠狠躁视频,亚洲国产精品无码久久一线,丫鬟露出双乳让老爷玩弄,第一次3q大战的经过和结果

首頁 > 教案下載 > 教案模板 > 《平行四邊形》教學設計(精選11篇)

《平行四邊形》教學設計

發布時間:2024-01-05

《平行四邊形》教學設計(精選11篇)

《平行四邊形》教學設計 篇1

  教學目的:

  1、使學生初步掌握長方形、正方形的基本特征,會在方格紙上畫長方形和正方形。

  2、初步認識平行四邊形,能正確區分長方形、正方形和平行四邊形。

  3、通過觀察、測量、動手操作和小組合作探索等活動,培養學生創新意識和抽象、概括能力。

  教學準備:多媒體課件,實物投影儀,每組3個材料袋,學生每人一塊釘子板。

  教學過程 :

  一、鋪墊復習(實物投影儀出示)

  1、用直尺量出下面幾條線段的長度,并標在圖上。

  2、用三角尺上的直角比一比,下面哪些角是直角?

  [評析:給出不同位置的線段和角,突出了幾何圖形的本質特征,同時也為探索長方形、正方形和平行四邊形的特征做了必要的鋪墊。]

  二、激趣導入  小朋友,你們喜歡動畫片嗎?今天我也給大家帶來一段動畫片,想看嗎?(想)請看屏幕(出示課件)。這個小男孩叫奧林,小女孩叫匹克,看,他們在草地上玩得多開心。今天咱們就和奧林、匹克一起來認識長方形、正方形和平行四邊形,好嗎?(板書課題)

  [評析:充分運用兒童好奇的心理特點,通過有趣的動畫引入課題,既能誘發學生參與學習的興趣,又點明了本課要學習的東西,從思想上吸引學生主動參與學習活動。]

  三、探究新知

  (一)長方形、正方形的特征。

  1、初步感知長方形、正方形的特征。小朋友看屏幕,奧林、匹克用小捧在草地上圍出了什么圖形?(長方形和正方形)。想一想,我們周圍哪些物體上還有長方形和正方形?(指生回答)你怎么這么快就能認出它們呢?看來,它們有一定的特征。下面咱們一起來研究長方形、正方形的特征,看誰學得快,學得好。請小朋友看屏幕(出示長方形、正方形),討論一下,長方形和正方形都是由什么組成的?指生回答得出:它們是由邊和角組成的。數一數,長方形有幾條邊,幾個角?正方形有幾條邊,幾個角?長方形和正方形都是由四條邊組成,它們都可以叫做什么形?(指生起名字)都有四個角。

  [評析:學生根據生活經驗,對長方形和正方形已積累了豐富的感性認識。教師讓學生通過對動畫中圖形的觀察和列舉生活中的長方形和正方形,初步感知長方形和正方形都是四邊形,它們都有四條邊和四個角組成。從而為進一步抽象概括長、正方形基本特征打下基礎。]

  2、分組操作,抽象概括長方形、正方形的基本特征。小朋友,長方形的4條邊有什么特點?正方形的4條邊有什么特點?它們的角又都是什么樣的角?(指生試答)小朋友用眼睛觀察的是否正確?需要你自己來驗證一下。請小組長打開1號紙袋,里面有什么?(直尺、三角尺、長方形和正方形紙、畫有長方形和正方形的練習紙)聽清要求:就用這些材料和工具,小組同學共同操作、討論、研究、驗證,看哪個小組想的辦法最多,最先得出結論。(學生操作、討論,教師巡視指導)哪個小組先來說一說?A組:長方形對著的邊相等,正方形四條邊都相等。師:你們是用什么方法驗證的?A組:我們是用直尺量的。師:請到實物投影儀上演示一下。師:他們組的方法怎么樣?(指生評價)師:哪個組有不同方法?B組:我們是用折紙的方法得出結論的。演示并讓學生評價。師:同學們的方法都不錯,請小朋友看屏幕演示。得出長方形、正方形邊的特點。師:咱們的結論和電腦一樣,那么,它們的角有什么特點?(分組回答)X組:它們的角都是直角。我們是用三角尺的直角測量的。指一生到實物投影儀上演示,得出長方形、正方形的基本特征。

  [評析:運用教師提供的材料,讓學生親自動手“量一量”、“折一折”、“比一比”,摒棄了圖形的非本質特征(大小、位置等),歸納概括出長、正方形的本質特征,這是認識事物的一次飛躍。]

  3、做游戲鞏固新知。小朋友真能干,通過小組合作,自己動手發現了長方形、正方形的特征。咱們來做圍釘子板游戲,好嗎?(1)圍任意一個長方形。(2)圍任意一個正方形,小組長檢查。(3)觀察屏幕上的釘子板圍成的正方形。數一數,一條邊占了幾個小釘?請小朋友把你圍的正方形變得同屏幕上的正方形一樣大。(4)把這個正方形變成一條長邊占4個釘子的長方形。(5)將長方形一條長邊不變,變成一個正方形。

  4、在方格紙上畫長方形和正方形。完成練習三十九第1題。

  [評析:通過在釘子板上圍不同的長、正方形游戲和在方格紙上畫長方形和正方形的實際操作,進一步加深對長、正方形基本特征的理解。]

  (二)初步認識平行四邊形。

  1、通過變魔術,引出平行四邊形。小朋友看過魔術表演嗎?咱們來變個魔術,請打開2號紙袋。看一看,里面有什么?(6根硬紙條,4個圖釘)師:咱們要圍一個長方形框,得用幾根硬紙條?4根什么樣的硬紙條?請小組的同學討論選出來。學生討論篩選后,教師提問:你們選了什么樣的?為什么這樣選?最后小組合作用圖釘固定出長方形框。圍好后,請小朋友推一推,拉一拉,看圖形變了沒有?(學生操作)教師任選兩個組變的圖形放在實物投影儀上,請小朋友觀察:這還是長方形嗎?(不是)是正方形嗎?(也不是)這是一種新的圖形,在日常生活中我們經常見到這種圖形。請看屏幕。(課件顯示“紡織圖案”、“樓梯扶手”、“籬笆”,并閃動其中的幾何圖形再抽象出來。)

  2、學習新圖形的名稱。讓學生找新圖形與長方形、正方形的共同點。師:對,它也有4條邊,4個角,也是四邊形。你想知道它的名稱嗎?(想)打開課本自己看,學會新圖形名稱----平行四邊形。

  3、分組操作、研究平行四邊形的特征。(1)回憶研究長方形、正方形特點的方法。(量一量、折一折、比一比)(2)打開3號紙袋(里面有兩張平行四邊形紙片),用剛才的方法,也可以想別的辦法,也可以觀察變平行四邊形框的過程,小組討論平行四邊形4條邊和4個角的特點。分組交流,教師小結。

  4、辨認平行四邊形。完成課本練習三十九第2題,指生訂正并說出理由。

  四、鞏固練習

  1、實物投影出示一組圖形,讓學生辨認哪個是長方形、正方形或平行四邊形。(圖略)

  2、每次用12根火柴圍一個長方形,看有幾種圍法?

  3、從下面各圖中找出所有長方形、正方形和平行四邊形。

  五、全課總結小朋友,通過今天的學習你有什么收獲?[評析:“你有什么收獲?”作為全課總結,學生可以講本課所學到的知識,也可以講學習知識運用的數學思想方法。通過學生的回答,不僅可以反饋學生本節學習的情況,同時也充分體現學生是學習的主體。]

  [總評:幾何初步知識的教學,不僅要使學生理解和掌握幾何圖形最基礎的知識,而且要培養初步的空間觀念。曲老師根據小學生空間觀念形成的心理特征,采用了觀察、操作、討論與語言調節相結合的教學方法,由未知到已知,由整體到部分,由具體到表象到抽象,由靜態到動態,讓學生通過各種感官主動參與知識形成的全過程,調動學生學習的興趣,使學生生動而具體的認識了三種圖形的基本特征。有利于形成空間觀念,培養學生的探索意識和實踐能力。全課層次清晰,思路明確,活而不亂,完全達到了預定的教學目標 ,是一節好的幾何教學課。]

《平行四邊形》教學設計 篇2

  一、素質教育目標

  (一)知識教學點

  1.掌握平行四邊形的判定定理1、2、3、4,并能與性質定理、定義綜合應用.

  2.使學生理解判定定理與性質定理的區別與聯系.

  3.會根據簡單的條件畫出平行四邊形,并說明畫圖的`依據是哪幾個定理.

  (二)能力訓練點

  1.通過“探索式試明法”開拓學生思路,發展學生思維能力.

  2.通過教學,使學生逐步學會分別從題設或結論出發尋求論證思路的分析方法,進一步提高學生分析問題,解決問題的能力.

  (三)德育滲透點

  通過一題多解激發學生的學習興趣.

  (四)美育滲透點

  通過學習,體會幾何證明的方法美.

  二、學法引導

  構造逆命題,分析探索證明,啟發講解.

  三、重點·難點·疑點及解決辦法

  1.教學重點:平行四邊形的判定定理1、2、3的應用.

  2.教學難點:綜合應用判定定理和性質定理.

  3.疑點及解決辦法:在綜合應用判定定理及性質定理時,在什么條件下用判定定理,在什么條件下用性質定理

  (強調在求證平行四邊形時用判定定理在已知平行四邊形時用性質定理).

《平行四邊形》教學設計 篇3

  教學目標:

  1.經歷探索平行四邊形有關概念和性質的過程,在活動中發展學生的探究意識和合作交流的習慣;

  2.探索并掌握平行四邊形的性質,并能簡單應用;

  教學重點:

  平行四邊形性質的探索。

  教學難點:

  平行四邊形性質的理解。

  教學方法:

  自主學習,合作交流

  教學過程:

  (一) 問題導學

  四邊形和三角形一樣,也是基本的平面圖形,它都有哪些性質呢?應該從何處著手探索平行四邊形的性質呢?

  (二) 自主學習

  2、教材導讀

  問題1首先讓學生通過閱讀課本內容動手拼一拼,并把重要的內容下面畫上橫線.

  再次讓學生按照導學案上的步驟在方格紙上畫一畫,

  從而得出結論: 平行四邊形的對邊相等,對角相等.

  注 意:表示平行四邊形四個頂點的大寫字母應順時針或逆時針排列.

  問題2首先讓學生按照導學案提示操作,再次完成課本“做一做”.

  從而得到結論: : 平行四邊形的對邊相等,對角相等.

  2、自主測評

  對“平行四邊形的對邊相等,對角相等”的性質進行檢測。

  注意:答題過程的書寫。

  3、收獲與問題

  整個自主學習的環節,學生有什么想法,可以發表自己的觀點,教師并予以解決。

  比如:為什么平行四邊形的對邊相等呢?

  為什么任意一平行四邊形都可以由兩個全等三角形拼接而成?

  (三)合作學習

  此題組的設計就是讓學生合作探究本節內容的難點,然后達成共識。

  先由學生獨立完成,再合作完成有爭議的問題。

  注 意:辯題設計第三題利用三角形的三邊關系來做。

  (四)探究展示

  1、問題共析

  此環節讓學生將組內問題在全班展示,組組交流,教師點評。

  2、展題設計

  對本節內容難點的鞏固,1題較為簡單,是對平行四邊形對邊相等該性質的直接應用。

  2題根據提示利用條件“DE平分∠ADC”和AD∥BC.

  注 意:解題的書寫格式。

  (五)評價歸納

  先讓學生對著學案上的標題總結本節內容,然后自由發表觀點,談收獲。

  (六)深化拓展

  此環節是對本節內容進行全面檢測。試題分為三個層次:基礎反思、能力提升、拓展創新。針對不同層次的學生有不同的要求。

《平行四邊形》教學設計 篇4

  課題:《平行四邊形》(第一課時)

  課型:新授課

  教學目標:

  1.知識與技能目標

  (1)理解平行四邊形的定義及有關概念

  (2)能根據定義探索并掌握平行四邊形的對邊相等、對角相等的性質

  (3)了解平行四邊形在實際生活中的應用,能根據平行四邊形的性質進行簡單的計算和證明

  2.過程與方法目標

  (1)經歷用平行四邊形描述、觀察世界的過程,發展學生的形象思維和抽象思維

  (2)在進行性質探索的活動過程中,發展學生的探究能力.

  (3)在對性質應用的過程中, 提高學生運用數學知識解決實際問題的能力,培養學生的推理能力和演繹能力

  3.情感、態度與價值觀目標

  在探究討論中養成與他人合作交流的習慣;在性質應用過程中培養獨立思考的習慣;在數學活動中獲得成功的體驗,提高克服困難的勇氣和信心。

  教學重點:

  (1)平行四邊形的性質

  (2)平行四邊形的概念、性質的應用

  教學難點:平行四邊形的性質的探究

  教學過程:

  一、設置疑問,導入新課

  教師活動:介紹四邊形與我們生活的密切聯系,指出長方形、正方形、梯形都是特殊的四邊形。提出問題(1)四邊形與平行四邊形(教材91頁章前圖)(2)四邊形與平行四邊形有怎樣的從屬關系?

  學生活動:(1)利用章前圖尋找四邊形

  (2)說說四邊形與平行四邊形的關系

  【設計意圖】指明學習任務,理清四邊形與特殊的四邊形之間的關系,引出課題

  二、問題探究

  (1)教師活動:教師用多媒體展示圖片,庭院的竹籬笆,電動伸縮門,活動衣架等

  學生活動:欣賞圖片并舉例結合小學已有的知識以及對圖片的觀察和思考,歸納:兩組對邊分別平行的四邊形是平行四邊形,再動手根據定義畫出平行四邊形

  【設計意圖】由現實生活入手,使學生獲得平行四邊形的感性認識,同時能調動學生的主觀能動性,激發好奇心和求知欲,發展學生的抽象思維能力

  (2)教師活動:提出問題根據定義畫一個平行四邊形,觀察這個四邊形,除了“兩組對邊分別平行以”外它的邊角之間還有其他的關系嗎?度量一下,是否和你的猜想一致?然后深入到小組中參與活動與指導

  學生活動動手畫圖,猜想,度量,驗證,得出

  ①平行四邊形的對邊相等

  ②平行四邊形的對角相等,鄰角互補

  (3)教師活動: 你能證明你發現的結論嗎?

  學生活動:小組內交流,并與前面所學知識聯系,證明線段和角相等的辦法是三角形全等,而四邊形問題轉化成三角形問題是作對角線

  學生活動: 獨立完成證明,一名同學板演

  【設計意圖】經歷猜想—實踐---驗證的過程,從中體會親自動手實踐學到知識的樂趣,獲得成功得體驗在尋找證明線段和角相等的辦法---三角形全等,一方面體會知識的前后連貫性,另一方面意在培養學生良好的學習習慣完成證明,培養學生的推理能力以及嚴謹的學習態度

  三、講解例題,鞏固練習

  教師活動:例1.小明用一根36米長的繩子圍成一個平行四邊形場地,其中一邊長16米,其它三邊長多少?引導學生審題

  學生活動:弄清題意,自己嘗試

  教師活動:示范解題過程

  強調平行四邊形性質的幾何表達

  在 中

  ①AB∥CD AD∥BC

  ②AB=CD AD=BC

  ③∠A=∠C ∠B=∠D

  學生活動:生練習課后習題

  【設計意圖】引導學生學會審題,這是解題的關鍵,同時體會生活中處處有數學訓練學生能清晰有條理的表達自己的思考過程,做到“言之有理,落筆有據”

  四、小結

  教師提出問題:

  1. 通過學習,本節課你學到了那些知識?

  2. 在對平行四邊形性質的探究過程中,你有那些認識?

  3. 在應用平行四邊形性質解題時,應注意哪些問題?

  學生活動:交流獲得的知識和得到的感受

  【設計意圖】通過整理,一方面讓學生理清本節課的知識結構,另一方面感受探究過程的樂趣,體驗克服困難的勇氣樹立自信心。

  布置作業:教材99頁第1題,第2題,第6題

  板書設計:

  1.平行四邊形的定義: 兩組對邊分別平行的四邊形

  2.平行四邊形的表示: 3.平行四邊形的性質: ①平行四邊形的對邊相等

  ②平行四邊形的對角相等,鄰角互補

《平行四邊形》教學設計 篇5

  一、教材分析

  1.教材的地位與作用

  平行四邊形是最基本的幾何圖形,也是 “空間與圖形”領域中研究的主要對象之一.它在生活中有著十分廣泛的應用,這不僅表現在日常生活中有許多平行四邊形的圖案,還包括其性質在生產、生活各領域的實際應用.

  本節課既是平行線的性質、全等三角形等知識的延續和深化,也是后續學習矩形、菱形、正方形等知識的堅實基礎,在教材中起著承上啟下的作用.平行四邊形的性質還為證明兩條線段相等、兩角相等、兩直線平行提供了新的方法和依據,拓寬了學生的解題思路.

  另外本節課是在學生掌握了平移、旋轉知識的基礎上探究平行四邊形的性質,能使學生經歷觀察、實驗、猜想、驗證、推理、交流等數學活動,對于培養學生的合情推理能力、發散思維能力以及探索、體驗數學思維規律等方面起著重要的作用.

  2.教學目標:

  知識技能:理解并掌握平行四邊形的相關概念和性質,培養學生初步應用這些知識解決問題的能力.

  數學思考:通過觀察、實驗、猜想、驗證、推理、交流等數學活動進一步發展學生的演繹推理能力和發散思維能力.

  解決問題:學生親自經歷探索平行四邊形有關概念和性質的過程,體會解決問題策略的多樣性.

  情感態度:培養學生獨立思考的習慣與合作交流的意識,激發學生探索數學的興趣,體驗探索成功后的快樂.

  3.教學重點、難點:

  重點:理解并掌握平行四邊形的概念及其性質.

  難點:運用平移、旋轉的圖形變換思想探究平行四邊形的性質.

  4.教材處理:

  基于“創造性地使用教材”和“真正地以學生為本”的教學理念,我將教材內容進行合理內化、整合.

  首先,打破了原教材的知識結構,構建成一個新的教學體系,分為探索平行四邊形的性質和平行四邊形性質的應用這樣兩部分,本節課是探索平行四邊形的性質.這樣安排能很好地體現知識結構的完整性和系統性.

  然后,將教材中平行四邊形性質的探究活動完全開放,給學生充分探索的時間與空間,動手實驗,動腦思考.力圖構建學生主動探索、獲取知識的平臺,使學生真正成為實踐的探索者、知識的構建者、愉快的收獲者.

  最后,把一道命題證明的練習題改編成實驗操作型問題.學生利用課前準備好的教具制作成模型,讓圖形動起來.這樣設計有利于學生在圖形運動變化的過程中去發現其中不變的關系,從而發現圖形的性質.

  總之,教材處理力求在深挖概念內涵;拓展性質外延;深化練習效用的過程中達到培養學生創新意識和實踐能力的教學目的.

  二.教學方法與手段

  本節課在教法上體現教師的“啟發引導”,幫助學生實現認識上與態度上的跨越;在學法上突出學生的“探索發現”,在教學過程中立足于讓學生自己去觀察、去發現、去創造.利用多媒體、自制教具輔助教學,增強教學的直觀性、實效性.

《平行四邊形》教學設計 篇6

  教學準備

  教師準備:投影儀,教具:課本“探究”內容;補充材料制成投影片.

  學生準備:復習,平行四邊形性質;學具:課本“探究”內容.

  學法解析

  1.認知題后:學習了三角形全等、平行四邊形定義、性質以后學習本節課內容.

  2.知識線索:

  3.學習方式:采用動手操作來發現新的知識,通過交流形成知識體系.

  教學過程

  一、回顧交流,逆向思索

  教師提問:

  1.平行四邊形定義是什么?如何表示?

  2.平行四邊形性質是什么?如何概括?

  學生活動:思考后舉手回答:

  回答:1.兩組對邊分別平行的四邊形叫做平行四邊形(教師在黑板上畫出下圖:幫助學生直觀理解)

  回答:2.平行四邊形性質從邊考慮:

  (1)對邊平行,

  (2)對邊相等,

  (3)對邊平行且相等();從角考慮:對角相等;從對角線考慮:兩條對角線互相平分.(借助上圖直觀理解).

  教師歸納:(投影顯示)

  平行四邊形【活動方略】

  教師活動:操作投影儀,顯示課本P96和P97“探究”的問題.用問題牽引學生動手操作、思考、發現、歸納、論證,可以讓學生分成4人小組討論,然后再進行小組匯報,教師同時也拿出教具同學在一起探索.

  學生活動:分四人小組,拿出準備好的學具探究.在活動中發現:

  (1)將兩長兩短的四根細木條(或用硬紙片),用小釘鉸合在一起,做成四邊形,如果等長的木條成對邊,那么無論如何轉動這四邊形,它的形狀都是平行四邊形;

  (2)若將兩根細木條中點用釘子釘合在一起,用像皮筋連接木條的頂點,做成一個四邊形,轉動兩根木條,這個四邊形是平行四邊形.

  (3)將兩條等長的木條平行放置,另外用兩根木條(不一定等長)用釘子予以加固,得到的四邊形一定是平行四邊形。

《平行四邊形》教學設計 篇7

  一 教學目標:

  1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.

  2.會綜合運用平行四邊形的判定方法和性質來解決問題.

  3.培養用類比、逆向聯想及運動的思維方法來研究問題.

  二 重點、難點

  1.重點:平行四邊形的判定方法及應用.

  2.難點:平行四邊形的判定定理與性質定理的靈活應用.

  3.難點的突破方法:

  平行四邊形的判別方法是本節課的核心內容.同時它又是后面進一步研究矩形、菱形、正方形判別的基礎,更是發展學生合情推理及說理的良好素材.本節課的教學重點為平行四邊形的判別方法.在本課中,可以探索活動為載體,并將論證作為探索活動的自然延續與必要發展,從而將直觀操作與簡單推理有機融合,達到突出重點、分散難點的目的.

  (1)平行四邊形的判定方法1、2都是平行四邊形性質的逆命題,它們的證明都可利用定義或前一個方法來證明.

  (2)平行四邊形有四種判定方法,與性質類似,可從邊、對角線兩方面進行記憶.要注意:

  ①本教材沒有把用角來作為判定的方法,教學中可以根據學生的情況作為補充;

  ②本節課只介紹前兩個判定方法.

  (3)教學中,我們可創設貼近學生生活、生動有趣的問題情境,開展有效的數學活動,如通過欣賞圖片及識別圖片中的平行四邊形,使學生建立對平行四邊形的直覺認識.并復習,平行四邊形的定義,建立新舊知識間的相互聯系.接著提出問題:小明的父親手中有一些木條,他想通過適當的測量、割剪,釘制一個平行四邊形框架,你能幫他想出一些辦法來嗎?從而組織學生主動參與、勤于動手、積極思考,使他們在自主探究與合作交流的過程中,從整體上把握“平行四邊形的判別”的方法.

  然后利用學生手中的學具——硬紙板條,通過觀察、測量、猜想、驗證、探索構成平行四邊形的條件.

  在學生拼圖的活動中,教師可以以問題串的形式展開對平行四邊形判別方法的探討,讓學生在問題解決中,實現對平行四邊形各種判別方法的掌握,并發展了學生說理及簡單推理的能力.

  (4)從本節開始,就應讓學生直接運用平行四邊形的性質和判定去解決問題,凡是可以用平行四邊形知識證明的問題,不要再回到用三角形全等證明.應該對學生提出這個要求.

  (5)平行四邊形知識的運用包括三個方面:一是直接運用平行四邊形的性質去解決某些問題.例如,求角的度數,線段的長度,證明角相等或線段相等;二是判定一個四邊形是平行四邊形,從而判定直線平行等;三是先判定一個四邊形是平行四邊形,然后再眼再用平行四邊形的性質去解決某些問題.

  (6)平行四邊形的概念、性質、判定都是非常重要的基礎知識,這些知識是本章的重點內容,要使學生熟練地掌握這些知識.

  三 例題的意圖分析

  本節課安排了3個例題,例1是教材P96的例3,它是平行四邊形的性質與判定的綜合運用,此題最好先讓學生說出證明的思路,然后老師總結并指出其最佳方法.例2與例3都是補充的題目,其目的就是讓學生能靈活和綜合地運用平行四邊形的判定方法和性質來解決問題.例3是一道拼圖題,教學時,可以讓學生動起來,邊拼圖邊說明道理,即可以提高學生的動手能力和學生的思維能力,又可以提高學生的學習興趣.如讓學生再用四個不等邊三角形拼一個如圖的大三角形,讓學生指出圖中所有的平行四邊形,并說明理由.

  四 課堂引入

  1.欣賞圖片、提出問題.

  展示圖片,提出問題,在剛才演示的圖片中,有哪些是平行四邊形?你是怎樣判斷的?

  2.【探究】:小明的父親手中有一些木條,他想通過適當的測量、割剪,釘制一個平行四邊形框架,你能幫他想出一些辦法來嗎?

  讓學生利用手中的學具——硬紙板條,通過觀察、測量、猜想、驗證、探索構成平行四邊形的條件,思考并探討:

  (1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?

  (2)你怎樣驗證你搭建的四邊形一定是平行四邊形?

  (3)你能說出你的做法及其道理嗎?

  (4)能否將你的探索結論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?

  (5)你還能找出其他方法嗎?

  從探究中得到:

  平行四邊形判定方法1 兩組對邊分別相等的四邊形是平行四邊形。

  平行四邊形判定方法2 對角線互相平分的四邊形是平行四邊形

《平行四邊形》教學設計 篇8

  一、 教學目標:

  1.掌握用一組對邊平行且相等來判定平行四邊形的方法.

  2.會綜合運用平行四邊形的四種判定方法和性質來證明問題.

  3.通過平行四邊形的性質與判定的應用,啟迪學生的思維,提高分析問題的能力.

  二、 重點、難點

  1.重點:平行四邊形各種判定方法及其應用,尤其是根據不同條件能正確地選擇判定方法.

  2.難點:平行四邊形的判定定理與性質定理的綜合應用.

  三、例題的意圖分析

  本節課的兩個例題都是補充的題目,目的是讓學生能掌握平行四邊形的第三種判定方法和會綜合運用平行四邊形的判定方法和性質來解決問題.學生程度好一些的學校,可以適當地自己再補充一些題目,使同學們會應用這些方法進行幾何的推理證明,通過學習,培養學生分析問題、尋找最佳解題途徑的能力.

  四、課堂引入

  1. 平行四邊形的性質;

  2. 平行四邊形的判定方法;

  3. 【探究】 取兩根等長的木條AB、CD,將它們平行放置,再用兩根木條BC、AD加固,得到的四邊形ABCD是平行四邊形嗎?

  結論:一組對邊平行且相等的四邊形是平行四邊形.

  五、例習題分析

  例1(補充)已知:如圖, ABCD中,E、F分別是AD、BC的中點,求證:BE=DF.

  分析:證明BE=DF,可以證明兩個三角形全等,也可以證明

  四邊形BEDF是平行四邊形,比較方法,可以看出第二種方法簡單.

  證明:∵ 四邊形ABCD是平行四邊形,

  AD∥CB,AD=CD.

  ∵ E、F分別是AD、BC的中點,

  DE∥BF,且DE= AD,BF= BC.

  DE=BF.

  四邊形BEDF是平行四邊形(一組對邊平行且相等的四邊形平行四邊形).

  BE=DF.

  此題綜合運用了平行四邊形的性質和判定,先運用平行四邊形的性質得到判定另一個四邊形是平行四邊形的條件,再應用平行四邊形的性質得出結論;題目雖不復雜,但層次有三,且利用知識較多,因此應使學生獲得清晰的證明思路.

  例2(補充)已知:如圖, ABCD中,E、F分別是AC上兩點,且BEAC于E,DFAC于F.求證:四邊形BEDF是平行四邊形.

  分析:因為BEAC于E,DFAC于F,所以BE∥DF.需再證明BE=DF,這需要證明△ABE與△CDF全等,由角角邊即可.

  證明:∵ 四邊形ABCD是平行四邊形,

  AB=CD,且AB∥CD.

  BAE=DCF.

《平行四邊形》教學設計 篇9

  教學目標:

  1、知識目標:

  理解平行四邊形的概念,掌握平行四邊形的邊、角、對角線的性質,并能初步用其來解決實際問題、

  2、能力目標:

  通過探索、發現、論證培養學生類比、轉化的數學思想方法,鍛煉學生縝密的邏輯思維能力,滲透“轉化”的數學思想、

  3、情感目標:

  讓學生在觀察、合作、討論、交流中感受數學的實際應用價值,同時培養學生善于發現、積極思考、合作學習的學習態度、

  教學重點

  平行四邊形的性質

  教學難點:

  理解并應用平行四邊形的性質

  教學方法:

  探究、啟發式

  教學過程

  一、創設情景引入新課

  通過觀察,讓學生勾勒出發現的幾何圖形:平行四邊形,然后舉出一些生活中的實例。從而引出平行四邊形在日常生活中應用廣泛,是一種美觀實用的圖形,因此我們有必要系統學習一下平行四邊形。

  二、判斷圖形,明確概念

  通過一些圖片的判斷,讓學生認識什么樣的四邊形是平行四邊形。

  然后讓學生自己歸納定義:有兩組對邊分別平行的四邊形叫做平行四邊形引入概念:

  三、平行四邊形的畫法

  讓學生自己在練習本上畫出平行四邊形,老師指導學生完成。

  接著老師展示畫平行四邊形的步驟,并演示給學生看。

  四、探究平行四邊形的旋轉

  用一枚圖釘在O點穿過,將平行四邊形ABCD繞點O旋轉180,觀察旋轉后的平行四邊形ABCD與紙上畫的平行四邊形EFGH是否重合。

  讓學生討論,得出結論,教師總結:我們發現,旋轉之后的兩個平行四邊形完全重合,即平行四邊形是中心對稱圖形,對角線的交點O就是對稱中心。

  五、例題與練習

  1、例題1:

  如圖,已知平行四邊形ABCD,∠A=40,求其他各個內角的度數。

  思路導引:已知一個平行四邊形與其中的一個角,由平行四邊形的性質可得兩鄰角互補,

  所以∠A+∠D=180,∠A+∠B=180,從而求出∠D和∠B,再求∠C。

  2、例題2:已知在平行四邊形ABCD中,AB=8,周長等于24,求其余三條邊的長。

  解:∵在平行四邊形ABCD中,

  AB=DC,AD=BC(平行四邊形的對邊相等)

  又∵AB=8

  AB+BC+CD+DA=24

  ∴CD=8,AD=BC=4

  3、練習

  1、在平行四邊形ABCD中,已知AB=8,AO=3,∠ABC=50°

  則CD=________,AC=________,

  ∠BAD=________,∠CDA=________

  2、在平行四邊形ABCD中,∠A+∠C=150°那么

  ∠A=__________,∠D=_________

  3、在平行四邊形ABCD中,∠A:∠B=4:5,那么

  ∠B=__________,∠C=_________

  六、小結與作業

  這節課你學到了什么?

  1、平行四邊形的概念

  2、平行四邊形的性質

  3、運用性質解決問題

  作業安排

  作業

  課本43頁練習第1題和第2題

《平行四邊形》教學設計 篇10

  教學目標

  知識與能力:

  1.運用類比的方法,通過學生的合作探究,得出平行四邊形的判定方法.

  2.理解平行四邊形的另一種判定方法,并學會簡單運用.

  過程與方法:

  1.經歷平行四邊行判別條件的探索過程,在有關活動中發展學生的合情推理意識.

  2.在運用平行四邊形的判定方法解決問題的過程中,進一步培養和發展學生的邏輯思維能力和推理論證的表達能力.

  情感、態度與價值觀:

  通過平行四邊形判別條件的探索,培養學生面對挑戰,勇于克服困難的意志,鼓勵學生大膽嘗試,從中獲得成功的體驗,激發學生的學習熱情.

  教學方法

  啟發誘導式 教具 三角尺

  教學重點

  平行四邊形判定方法的探究、運用.

  教學難點

  對平行四邊形判定方法的探究以及平行四邊形的性質和判定的綜合運用

  教學過程:

  第一環節 復習引入:

  問題1:

  1.平行四邊形的定義是什么?它有什么作用?

  2.判定四邊形是平行四邊形的方法有哪些?

  (1)兩組對邊分別平行的四邊形是平行四邊形.

  (2)一組對邊平行且相等的四邊形是平行四邊形.

  (3)兩條對角線互相平分的四邊形是平行四邊形.

  第二環節 探索活動

  活動:

  工具:兩對長度分別相等的木條。

  動手:能否在平面內用這四根筆擺成一個平行四邊形?

  思考1.1:你能說明你所擺出的四邊形是平行四邊形嗎?

  已知:四邊形ABCD中,AD=BC,AB=CD. 試說明四邊形ABCD是平行四邊形.

  思考1.2:以上活動事實,能用文字語言表達嗎?

  學生以小組為單位,利用課前準備好的學具動手操作、觀察,完成探究活動1,共同得到:

  (1)只有將兩兩相等的木條分別作為四邊形的兩組對邊才能得到平行四邊形.

  (2)通過觀察、實驗、猜想到:

  兩組對邊分別相等的四邊形是平行四邊形.

  在此活動中,教師應重點關注:

  (1)學生在拼四邊形時,能否將相等兩木條作為四邊形的對邊;

  (2)轉動四邊形,改變它的形狀的過程中,能否觀察得到在此過程中它始終是一個平行四邊形;

  (3)學生能否通過獨立思考、小組合作得出正確的證明思路.

  第三環節 鞏固練習

  例1 如圖:在四邊形ABCD中,∠1=∠2,∠3=∠4.四邊形ABCD是平行四邊形嗎?為什么?

  八年級數學上冊教案例2 如圖所示,AC=BD=16,AB=CD=EF=15,CE=DF=9,圖中有哪些互相平行的線段?

  隨堂練習

  1.判斷下列說法是否正確

  (1)一組對邊平行且另一組對邊相等的四邊形是平行四邊形 ( )

  (2)兩組對角都相等的四邊形是平行四邊形 ( )

  (3)一組對邊平行且一組對角相等的四邊形是平行四邊形 ( )

  (4)一組對邊平行,一組鄰角互補的四邊形是平行四邊形 ( )

  2.有兩條邊相等,并且另外的兩條邊也相等的四邊形一定是平行四邊形嗎?為什么?

  3.如圖所示,四個全等的三角形拼成一個大的三角形,找出圖中所有的平行四邊形,并說明理由.

  4.如圖:AD是ΔABC的邊BC邊上的中線.

  (1)畫圖:延長AD到點E,使DE=AD,連接BE,CE;

  (2)判斷四邊形ABEC的形狀,并說明理由.

  第四環節 小結:

  師生共同小結,主要圍繞下列幾個問題:

  (1)判定一個四邊形是平行四邊形的方法有哪幾種?

  (2)我們是通過什么方法得出平行四邊形的這幾種判定方法的,這樣的探索過程對你有什么啟發?

  (3)平行四邊形判定的應用 集備意見 個案補充

《平行四邊形》教學設計 篇11

  教學目標:

  1、進一步熟練運用平行四邊形、矩形、菱形、正方形的性質和判定方法解決有關問題,清楚平行四邊形、特殊平行四邊形的特征以及彼此之間的關系。

  2、能利用它們的性質和判定進行推理和計算。

  3、使學生明確知識體系,提高空間想象能力,掌握基本的推理能力。

  教學重點、難點:

  重點:掌握特殊平行四邊形性質與判定。

  難點:能用特殊平行四邊形的判定定理和性質定理進行幾何證明和計算。

  教學過程:

  一、梳理知識:

  1.特殊平行四邊形的性質.

  1)如圖所示:在矩形ABCD中,對角線AC、BD相交于O點,已知AB=3cm,AC=5cm

  則BC=_____cm,△BOC的周長=_____cm

  2)如圖所示:在菱形ABCD中,對角線AC、BD相交于O點,已知AB=5cm,AC=6cm,

  則你能求出哪些線段的長度?

  3)如圖所示:在正方形ABCD中,對角線AC、BD相交于O點,已知OA=3cm,

  則AB=_____cm,△BOC的周長=_______cm.

  小結:特殊平行四邊形的性質(PPT呈現)

  2.特殊平行四邊形的判定.

  要使平行四邊形ABCD成為矩形,需要增加的條件________.

  要使平行四邊形ABCD成為菱形,需要增加的條件________.

  要使矩形ABCD成為正方形,需要增加的條件________.

  要使菱形ABCD成為正方形,需要增加的條件________.

  小結:特殊平行四邊形的判定(PPT呈現)

  二、深化提高:

  1.已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E,

  (1)求證:四邊形ADCE為矩形;

  (2)當△ABC滿足什么條件時,

  四邊形ADCE是一個正方形?并給出證明.

  2.如圖,矩形ABCD的對角線AC、BD交于點O,

  過點D作DP∥OC,過C點作CP∥DO,交DP于點P,

  試判斷四邊形CODP的形狀.

  變式1:如果題目中的矩形變為菱形,(圖一)結論應變為什么?

  變式2:如果題目中的矩形變為正方形,(圖二)結論又應變為什么?

  3.如圖,在中,是邊的中點,分別是及其延長線上的點,.

  (1)求證:.

  (2)請連結,試判斷四邊形的形狀,并說明理由.

  (3)若四邊形是菱形,判斷的形狀。

  三、拓展提高

  1.如圖,以△ABC的三邊為邊在BC的同側分別作三個等邊三角形,即△ABD、

  △BCE、△ACF,

  (1)四邊形ADEF是什么四邊形?并說明理由

  (2)當△ABC滿足什么條件時,四邊形ADEF是菱形?

  (3)當△ABC滿足什么條件時,以A、D、E、F為頂點的四邊形不存在.

  2.如圖,已知⊿ABC是等腰三角形,頂角∠BAC=,(<60°)D是BC邊上的一點,連接AD,線段AD繞點A順時針旋轉到AE,過點E作BC的平行線,交AB于點F,連接DE,BE,DF.

  (1)求證:BE=CD;

  (2)若AD⊥BC,試判斷四邊形BDFE的形狀,并給出證明,

  四、課堂小結

  五、作業

  1.如圖,在正方形ABCD中,P為對角線BD上一點,

  PE⊥BC,垂足為E,PF⊥CD,垂足為F。

  求證:EF=AP

  2.如圖,正方形ABCD中,E是對角線BD上的點,且BE=AB,

  EF⊥BD,交CD于點F,DE=2.5cm,求CF的長。

  3.如圖,四邊形ABCD是菱形,對角線AC=8cm,BD=6cm,

  DH⊥AB于H,求:DH的長。

《平行四邊形》教學設計(精選11篇) 相關內容:
  • 《分香蕉》教學設計(通用16篇)

    教學內容:北師大版數學二年級上冊第38頁分香蕉除法的認識教學目標:1.進一步體驗除法的意義,建立除法算式與等分活動之間的聯系。2.認識除法各部分的名稱,能正確讀寫除法算式。理解除法算式所表示的意義。...

  • 《平行四邊形》教案(通用16篇)

    【教材分析】本節課是人教版義務教育課程標準實驗教科書數學五年級上冊第五單元《多邊形的面積》第1課時《平行四邊形的面積》。平行四邊形面積的計算是在學生已經掌握并能靈活運用長方形、正方形面積計算公式,理解平行四邊形特征的基礎上...

  • 《分香蕉》教案(精選17篇)

    教學內容:分香蕉教學目的:讓學生學會用除法表示等分的過程,并介紹除法算式的讀法及各部分的名稱。教學重難點:學生能夠學會用除法表示等分的過程。教具:情景圖教學方法:引導法教學過程:一、分香蕉活動。...

  • 《讀數寫數》教案(精選7篇)

    教學內容教科書第1~3頁例1、例2及相應的課堂活動與練習。教學目標1筆數的方式幫助學生建立計數單位“一”和“十”的直觀印象,為建立數位概念作好準備。會計數單位“一”和“十”數出100以內的數,會正確地數出“翻坎數”。...

  • 《觀察物體》教學設計(精選13篇)

    教學內容:《義務教育課程標準實驗教科書 數學》二年級上冊第五單元的“觀察物體”。教學目標:1、知識目標:通過實際操作初步體會從不同角度觀察物體所看到的形狀可能是不同的,學會根據看到的形狀正確判斷觀察者的位置。...

  • 《諫太宗十思疏》教學設計(精選15篇)

    《諫太宗十思疏》教學設計示例(二)教學目的 1、學習作者反復開導、循循善誘的勸諫藝術; 2.領悟“十思”的積極意義; 3.掌握文中一些實詞的詞義和虛詞的用法。 重點難點 1.誦讀、領悟、背誦全文。(重點) 2.翻譯難懂的語句。...

  • 《整十數加一位數及相應的減法》教學設計(精選13篇)

    教學內容:整十數加一位數及相應的減法教學目標:1、讓學生經歷兩位數加、減一位數的口算方法的探索過程,能比較熟練的進行口算。并了解加、減發算式中各部分的名稱。...

  • 《觀察物體》教案(通用16篇)

    教學內容:教材第2頁例1,完成教材第3頁練習一第1、2、4、5題 第 1 課時 課型 新授教學目標 :1.結合現實生活,通過具體觀察活動,使學生能體驗從正面看到的平面圖形,它的實物圖可以有多種擺放方式。...

  • 教案模板
主站蜘蛛池模板: 芷江| 莱西市| 于田县| 乌恰县| 江华| 马龙县| 全椒县| 沈丘县| 象山县| 秭归县| 永寿县| 水富县| 钟祥市| 特克斯县| 宕昌县| 昆明市| 东宁县| 府谷县| 政和县| 仁寿县| 大丰市| 上林县| 瑞昌市| 南靖县| 武冈市| 大理市| 环江| 顺平县| 双流县| 民丰县| 永福县| 凤凰县| 夏邑县| 泉州市| 宣恩县| 桦川县| 新龙县| 烟台市| 敖汉旗| 射洪县| 沁水县|