初中數(shù)學(xué)教案:完全平方公式(精選2篇)
初中數(shù)學(xué)教案:完全平方公式 篇1
教學(xué)建議
一、知識結(jié)構(gòu)
二、重點(diǎn)、難點(diǎn)分析
本節(jié)教學(xué)的重點(diǎn)是完全平方公式的熟記及應(yīng)用.難點(diǎn)是對公式特征的理解(如對公式中積的一次項(xiàng)系數(shù)的理解).完全平方公式是進(jìn)行代數(shù)運(yùn)算與變形的重要的知識基礎(chǔ)。
1.兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍.即:
這兩個公式是根據(jù)乘方的意義與多項(xiàng)式的乘法法則得到的.
這兩個公式的結(jié)構(gòu)特征是:左邊是兩個相同的二項(xiàng)式相乘,右邊是三項(xiàng)式,是左邊二中兩項(xiàng)的平方和,加上(這兩項(xiàng)相加時)或減去(這兩項(xiàng)相減時)這兩項(xiàng)乘積的2倍;公式中的字母可以表示具體的數(shù)(正數(shù)或負(fù)數(shù)),也可以表示單項(xiàng)式或多項(xiàng)式等代數(shù)式.
2.只要符合這一公式的結(jié)構(gòu)特征,就可以運(yùn)用這一公式.
在運(yùn)用公式時,有時需要進(jìn)行適當(dāng)?shù)淖冃危?可先變形為 或 或者 ,再進(jìn)行計算.
在運(yùn)用公式時,防止發(fā)生 這樣錯誤.
3.運(yùn)用完全平方公式計算時,要注意:
(1)切勿把此公式與公式 混淆,而隨意寫成 .
(2)切勿把“乘積項(xiàng)” 中的2丟掉.
(3)計算時,要先觀察題目特點(diǎn)是否符合公式的條件,若不符合,應(yīng)先變形為符合公式的條件的形式,再利用公式進(jìn)行計算,若不能變?yōu)榉瞎綏l件的形式,則應(yīng)運(yùn)用乘法法則進(jìn)行計算.
4. 與 都叫做完全平方公式.為了區(qū)別,我們把前者叫做兩數(shù)和的完全平方公式,后者叫做兩數(shù)差的完全平方公式.
三、教法建議
1.在公式的運(yùn)用上,與平方差公式的運(yùn)用一樣,應(yīng)著重讓學(xué)生掌握公式的結(jié)構(gòu)特征和字母表示數(shù)的廣泛意義,教科書把公式中的字母同具體題目中的數(shù)或式子,用“ ”連結(jié)起來,逐項(xiàng)比較、對照,步驟寫得完整,便于學(xué)生理解如何正確地使用完全平方公式進(jìn)行計算.
2.正確地使用公式的關(guān)鍵是確定是否符合使用公式的條件.重要的是確定兩數(shù),然后再看是否兩數(shù)的和(或差),最后按照公式寫出兩數(shù)和(或差)的平方的結(jié)果.
3.如何使學(xué)生記牢公式呢?我們注意了以下兩點(diǎn).
(1)既講“法”,又講“理”
在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式、法則道理的基礎(chǔ)上進(jìn)行記憶.我們引導(dǎo)學(xué)生借助面積圖形對完全平方公式做直觀說明,也是對說理的重視.在“明白道理”這個前提下的記憶,即使學(xué)生將來發(fā)生錯誤也易于糾正.
(2)講聯(lián)系、講對比、講特點(diǎn)
對于類似的內(nèi)容學(xué)生容易混淆,比如在本節(jié)出現(xiàn)的(a+b)2=a2+b2的錯誤,其原因是把完全平方公式和“舊”知識(ab)2=a2b2及分配律弄混,排除新舊知識間相互干擾的一種作法是向?qū)W生指明新知識的特點(diǎn).所以講“理”是要講聯(lián)系、講對比、講特點(diǎn).
一、教學(xué)目標(biāo)
1.理解完全平方公式的意義,準(zhǔn)確掌握兩個公式的結(jié)構(gòu)特征.
2.熟練運(yùn)用公式進(jìn)行計算.
3.通過推導(dǎo)公式訓(xùn)練學(xué)生發(fā)現(xiàn)問題、探索規(guī)律的能力.
4.培養(yǎng)學(xué)生用數(shù)形結(jié)合的方法解決問題的數(shù)學(xué)思想.
5.滲透數(shù)學(xué)公式的結(jié)構(gòu)美、和諧美.
二、學(xué)法引導(dǎo)
1.教學(xué)方法:嘗試指導(dǎo)法、講練結(jié)合法.
2.學(xué)生學(xué)法:本節(jié)學(xué)習(xí)了乘法公式中的完全平方,一個是兩數(shù)和的平方,另一個是兩數(shù)差的平方,兩者僅一個“符號”不同.相乘的結(jié)果是兩數(shù)的平方和,加上(或減去)兩數(shù)的積的2倍,兩者也僅差一個“符號”不同,運(yùn)用完全平方公式計算時,要注意:
(1)切勿把此公式與公式 混淆,而隨意寫成 .
(2)切勿把“乘積項(xiàng)”2ab中的2丟掉.
(3)計算時,要先觀察題目是否符合公式的條件.若不符合,應(yīng)先變形為符合公式的條件的形式,再利用公式進(jìn)行計算;若不能變?yōu)榉蠗l件的形式,則應(yīng)運(yùn)用乘法法則進(jìn)行計算.
三、重點(diǎn)•難點(diǎn)及解決辦法
(一)重點(diǎn)
掌握公式的結(jié)構(gòu)特征和字母表示的廣泛含義,正確運(yùn)用公式進(jìn)行計算.
(二)難點(diǎn)
綜合運(yùn)用平方差公式與完全平方公式進(jìn)行計算.
(三)解決辦法
加強(qiáng)對公式結(jié)構(gòu)特征的深入理解,在反復(fù)練習(xí)中掌握公式的應(yīng)用.
四、課時安排
一課時.
五、教具學(xué)具準(zhǔn)備
投影儀或電腦、自制膠片.
六、師生互動活動設(shè)計
1.讓學(xué)生自編幾道符合平方差公式結(jié)構(gòu)的計算題,目的是辨認(rèn)題目的結(jié)構(gòu)特征.
2.引入完全平方公式,讓學(xué)生用文字概括公式的內(nèi)容,培養(yǎng)抽象的數(shù)字思維能力.
3.舉例分析如何正確使用完全平方公式,師生共練完成本課時重點(diǎn)內(nèi)容.
4.適時練習(xí)并總結(jié),從實(shí)踐到理論再回到實(shí)踐,以指導(dǎo)今后的解題.
七、教學(xué)步驟
(一)明確目標(biāo)
本節(jié)課重點(diǎn)學(xué)習(xí)完全平方公式及其應(yīng)用.
(二)整體感知
掌握好完全平方公式的關(guān)鍵在于能正確識別符合公式特征的結(jié)構(gòu),同時還要注意公式中2ab中2的問題,在解題過程中應(yīng)多觀察、多思考、多揣摩規(guī)律.
(三)教學(xué)過程
1.計算導(dǎo)入;求得公式
(1)敘述平方差公式的內(nèi)容并用字母表示;
(2)用簡便方法計算
①103×97
②103 × 103
(3)請同學(xué)們自編一個符合平方差公式結(jié)構(gòu)的計算題,并算出結(jié)果.
學(xué)生活動:編題、解題,然后兩至三個學(xué)生說出題目和結(jié)果.
要想用好公式,關(guān)鍵在于辨認(rèn)題目的結(jié)構(gòu)特征,正確使用公式,這節(jié)課我們繼續(xù)學(xué)習(xí)“乘
法公式”.
引例:計算 ,
學(xué)生活動:計算 , ,兩名學(xué)生板演,其他學(xué)生在練習(xí)本上完成,然后說出答案,得出公式.
或合并為:
教師引導(dǎo)學(xué)生用文字概括公式.
方法:由學(xué)生概括,教師給予肯定、否定或更正,同時板書.
兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍.
【教法說明】
①復(fù)習(xí)平方差公式,主要是引起回憶,鞏固公式;編題在于提高興趣.
②有了平方差公式的推導(dǎo)過程,學(xué)生基本建立起了一些特殊多項(xiàng)式乘法的認(rèn)識方法,因此推導(dǎo)完全平方公式可以由計算直接得出.
2.結(jié)合圖形,理解公式
根據(jù)圖形完成下列問題:
如圖:A、B兩圖均為正方形,
(1)圖A中正方形的面積為____________,(用代數(shù)式表示)
圖Ⅰ、Ⅱ、Ⅲ、Ⅳ的面積分別為_______________________。
(2)圖B中,正方形的面積為____________________,
Ⅲ的面積為______________,
Ⅰ、Ⅱ、Ⅳ的面積和為____________,
用B、Ⅰ、Ⅱ、Ⅳ的面積表示Ⅲ的面積_________________。
分別得出結(jié)論:
學(xué)生活動:在教師引導(dǎo)下回答問題.
【教法說明】利用圖形講解,增強(qiáng)學(xué)生對公式的直觀理解,以便更好地掌握公式,同時也培養(yǎng)學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想。
3.探索新知,講授新課
(1)引例:計算
教師講解:在 中,把x看成a,把2y看成b,在 中把2x看成a,把3y看成b,則 、 ,就可用完全平方公式來計算,即
【教法說明】 引例的目的在于使學(xué)生進(jìn)一步理解公式的結(jié)構(gòu),為運(yùn)用公式打好基礎(chǔ).
(2)例1 運(yùn)用完全平方公式計算:
① ② ③
學(xué)生活動:學(xué)生獨(dú)立在練習(xí)本上嘗試解題,3個學(xué)生板演.
【教法說明】 讓學(xué)生先模仿公式解題,學(xué)生可能會出現(xiàn)一些問題,這也正是學(xué)生對公式理解、應(yīng)用和熟練程度上存在的需要解決的問題,反饋后要緊扣公式,重點(diǎn)講解,達(dá)到解決問題的目的,關(guān)于例呈中(3)的計算,可對照公式直接計算,也可變形成,然后再進(jìn)行計算,同時也可訓(xùn)練學(xué)生靈活運(yùn)用學(xué)過的知識的能力.
4.嘗試反饋,鞏固知識
練習(xí)一
運(yùn)用完全平方公式計算:
(1) (2) (3)
(4) (5) (6)
(7) (8) (9)
(l0)
學(xué)生活動:學(xué)生在練習(xí)本上完成,然后同學(xué)互評,教師抽看結(jié)果,練習(xí)中存在的共性問題要集中解決.
5.變式訓(xùn)練,培養(yǎng)能力
練習(xí)二
運(yùn)用完全平方公式計算:
(l) (2) (3) (4)
學(xué)生活動:學(xué)生分組討論,選代表解答.
練習(xí)三
(1)有甲、乙、丙、丁四名同學(xué),共同計算,以下是他們的計算過程,請判斷他們的計算是否正確,不正確的請指出錯在哪里.
甲的計算過程是:原式
乙的計算過程是:原式
丙的計算過程是:原式
丁的計算過程是:原式
(2)想一想, 與 相等嗎?為什么?
與 相等嗎?為什么?
學(xué)生活動:觀察、思考后,回答問題.
【教法說明】 練習(xí)二是一組數(shù)字計算題,使學(xué)生體會到公式的用途,也可以激發(fā)學(xué)生學(xué)習(xí)興趣,調(diào)動學(xué)生的學(xué)習(xí)積極性,同時也起到加深理解公式的作用.練習(xí)三第(l)題實(shí)際是課本例4,此題是與平方差公式的綜合運(yùn)用,難度較大.通過給出解題步驟,讓學(xué)生進(jìn)行判斷,使難度降低,學(xué)生易于理解,教師要注意引導(dǎo)學(xué)生分析這類題的結(jié)構(gòu)特征,掌握解題方法.通過完成第(2)題使學(xué)生進(jìn)一步理解 與 之間的相等關(guān)系,同時加深理解代數(shù)中“a”具有的廣泛意義.
練習(xí)四
運(yùn)用乘法公式計算:
(l) (2)
(3) (4)
學(xué)生活動:采取比賽的方式把學(xué)生分成四組,每組完成一題,看哪一組完成得快而且準(zhǔn)確,每組各派一個學(xué)生板演本組題目.
【教法說明】 這樣做的目的是訓(xùn)練學(xué)生的快速反應(yīng)能力及綜合運(yùn)用知識的能力,同時也激發(fā)學(xué)生的學(xué)習(xí)興趣,活躍課堂氣氛.
(四)總結(jié)、擴(kuò)展
這節(jié)課我們學(xué)習(xí)了乘法公式中的完全平方公式.
引導(dǎo)學(xué)生舉例說明公式的結(jié)構(gòu)特征,公式中字母含義和運(yùn)用公式時應(yīng)該注意的問題.
八、布置作業(yè)
P133 1,2.(3)(4).
參考答案
略.
初中數(shù)學(xué)教案:完全平方公式 篇2
完全平方公式
一、 內(nèi)容簡介
本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式。
關(guān)鍵信息:
1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個相乘的多項(xiàng)式和等號右邊得出的三項(xiàng)有什么關(guān)系。通過學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達(dá)與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。
2、用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。
二、學(xué)習(xí)者分析:
1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識和技能:
①同類項(xiàng)的定義。
②合并同類項(xiàng)法則
③多項(xiàng)式乘以多項(xiàng)式法則。
2、學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:
在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。
三、 教學(xué)/學(xué)習(xí)目標(biāo)及其對應(yīng)的課程標(biāo)準(zhǔn):
(一)教學(xué)目標(biāo):
1、經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號感和推力能力。
2、會推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡單的計算。
(二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認(rèn)識有理
數(shù)、實(shí)數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運(yùn)算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、防城、不等式、函數(shù)等進(jìn)行描述。
(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同
角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗(yàn)。
(五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨(dú)立克服困難
和運(yùn)用知識解決問題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。
四、 教育理念和教學(xué)方式:
1、教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者:學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動的、富有個性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。
教學(xué)是師生交往、積極互動、共同發(fā)展的過程。當(dāng)學(xué)生迷路的時
候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向;當(dāng)學(xué)生登山畏懼了的時候,教師不是拖著他走,而是喚起他內(nèi)在的精神動力,鼓勵他不斷向上攀登。
2、采用“問題情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式
展開教學(xué)。
3、教學(xué)評價方式:
(1) 通過課堂觀察,關(guān)注學(xué)生在觀察、總結(jié)、訓(xùn)練等活動中的主
動參與程度與合作交流意識,及時給與鼓勵、強(qiáng)化、指導(dǎo)和矯正。
(2) 通過判斷和舉例,給學(xué)生更多機(jī)會,在自然放松的狀態(tài)下,
揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學(xué)情,調(diào)查教學(xué)。
(3) 通過課后訪談和作業(yè)分析,及時查漏補(bǔ)缺,確保達(dá)到預(yù)期的
教學(xué)效果。
五、 教學(xué)媒體 :多媒體 六、 教學(xué)和活動過程:
教學(xué)過程設(shè)計如下:
〈一〉、提出問題
[引入] 同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,通過運(yùn)算下列四個小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個單項(xiàng)式的關(guān)系嗎?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析問題
1、[學(xué)生回答] 分組交流、討論
(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,
(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。
(1)原式的特點(diǎn)。
(2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。
(3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號的特點(diǎn))。
(4)三項(xiàng)與原多項(xiàng)式中兩個單項(xiàng)式的關(guān)系。
2、[學(xué)生回答] 總結(jié)完全平方公式的語言描述:
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。
3、[學(xué)生回答] 完全平方公式的數(shù)學(xué)表達(dá)式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、運(yùn)用公式,解決問題
1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)
(m+n)2=____________, (m-n)2=_______________,
(-m+n)2=____________, (-m-n)2=______________,
(a+3)2=______________, (-c+5)2=______________,
(-7-a)2=______________, (0.5-a)2=______________.
2、判斷:
( )① (a-2b)2= a2-2ab+b2
( )② (2m+n)2= 2m2+4mn+n2
( )③ (-n-3m)2= n2-6mn+9m2
( )④ (5a+0.2b)2= 25a2+5ab+0.4b2
( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2
( )⑥ (-a-2b)2=(a+2b)2
( )⑦ (2a-4b)2=(4a-2b)2
( )⑧ (-5m+n)2=(-n+5m)2
3、小試牛刀
① (x+y)2 =______________;② (-y-x)2 =_______________;
③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;
⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;
⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.
〈四〉、[學(xué)生小結(jié)]
你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?
(1) 公式右邊共有3項(xiàng)。
(2) 兩個平方項(xiàng)符號永遠(yuǎn)為正。
(3)中間項(xiàng)的符號由等號左邊的兩項(xiàng)符號是否相同決定。
(4)中間項(xiàng)是等號左邊兩項(xiàng)乘積的2倍。
〈五〉、冒險島:
(1)(-3a+2b)2=________________________________
(2)(-7-2m) 2 =__________________________________
(3)(-0.5m+2n) 2=_______________________________
(4)(3/5a-1/2b) 2=________________________________
(5)(mn+3) 2=__________________________________
(6)(a2b-0.2) 2=_________________________________
(7)(2xy2-3x2y) 2=_______________________________
(8)(2n3-3m3) 2=________________________________
〈六〉、學(xué)生自我評價
[小結(jié)] 通過本節(jié)課的學(xué)習(xí),你有什么收獲和感悟?
本節(jié)課,我們自己通過計算、分析結(jié)果,總結(jié)出了完全平方公式。在知識探索的過程中,同學(xué)們積極思考,大膽探索,團(tuán)結(jié)協(xié)作共同取得了進(jìn)步。
〈七〉[作業(yè)] P34 隨堂練習(xí) P36 習(xí)題
七、課后反思
本節(jié)課雖然算不上課本中的難點(diǎn),但在整式一章中是個重點(diǎn)。它是多項(xiàng)式乘法特殊形式下的一種簡便運(yùn)算。學(xué)生需要熟練掌握公式兩種形式的使用方法,以提高運(yùn)算速度。授課過程中,應(yīng)注重讓學(xué)生總結(jié)公式的等號兩邊的特點(diǎn),讓學(xué)生用語言表達(dá)公式的內(nèi)容,讓學(xué)生說明運(yùn)用公式過程中容易出現(xiàn)的問題和特別注意的細(xì)節(jié)。然后再通過逐層深入的練習(xí),鞏固完全平方公式兩種形式的應(yīng)用。為完全平方公式第二節(jié)課的實(shí)際應(yīng)用和提高應(yīng)用做好充分的準(zhǔn)