夜夜躁爽日日躁狠狠躁视频,亚洲国产精品无码久久一线,丫鬟露出双乳让老爷玩弄,第一次3q大战的经过和结果

首頁 > 教案下載 > 數學教案 > 高中數學教案 > 高一數學教案 > 等比數列

等比數列

等比數列


教學目標 
1.理解的概念,掌握的通項公式,并能運用公式解決簡單的問題.
(1)正確理解的定義,了解公比的概念,明確一個數列是的限定條件,能根據定義判斷一個數列是,了解等比中項的概念;
(2)正確認識使用的表示法,能靈活運用通項公式求的首項、公比、項數及指定的項;
(3)通過通項公式認識的性質,能解決某些實際問題.
2.通過對的研究,逐步培養學生觀察、類比、歸納、猜想等思維品質.
3.通過對概念的歸納,進一步培養學生嚴密的思維習慣,以及實事求是的科學態度.


教學建議
教材分析
(1)知識結構
是另一個簡單常見的數列,研究內容可與等差數列類比,首先歸納出的定義,導出通項公式,進而研究圖像,又給出等比中項的概念,最后是通項公式的應用.
(2)重點、難點分析
教學重點是的定義和對通項公式的認識與應用,教學難點 在于通項公式的推導和運用.
①與等差數列一樣,也是特殊的數列,二者有許多相同的性質,但也有明顯的區別,可根據定義與通項公式得出的特性,這些是教學的重點.
②雖然在等差數列的學習中曾接觸過不完全歸納法,但對學生來說仍然不熟悉;在推導過程中,需要學生有一定的觀察分析猜想能力;第一項是否成立又須補充說明,所以通項公式的推導是難點.
③對等差數列、的綜合研究離不開通項公式,因而通項公式的靈活運用既是重點又是難點.
教學建議
(1)建議本節課分兩課時,一節課為的概念,一節課為通項公式的應用.
(2)概念的引入,可給出幾個具體的例子,由學生概括這些數列的相同特征,從而得到的定義.也可將幾個等差數列和幾個混在一起給出,由學生將這些數列進行分類,有一種是按等差、等比來分的,由此對比地概括的定義.
(3)根據定義讓學生分析的公比不為0,以及每一項均不為0的特性,加深對概念的理解.
(4)對比等差數列的表示法,由學生歸納的各種表示法. 啟發學生用函數觀點認識通項公式,由通項公式的結構特征畫數列的圖象.
(5)由于有了等差數列的研究經驗,的研究完全可以放手讓學生自己解決,教師只需把握課堂的節奏,作為一節課的組織者出現.
(6)可讓學生相互出題,解題,講題,充分發揮學生的主體作用.

 

教學設計示例

課題:的概念

教學目標 

1.通過教學使學生理解的概念,推導并掌握通項公式.

2.使學生進一步體會類比、歸納的思想,培養學生的觀察、概括能力.

3.培養學生勤于思考,實事求是的精神,及嚴謹的科學態度.

教學重點,難點

重點、難點是的定義的歸納及通項公式的推導.

教學用具

投影儀,多媒體軟件,電腦.

教學方法

討論、談話法.

教學過程 

一、提出問題

給出以下幾組數列,將它們分類,說出分類標準.(幻燈片)

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

243,81,27,9,3,1, ,…

31,29,27,25,23,21,19,…

1,-1,1,-1,1,-1,1,-1,…

1,-10,100,-1000,10000,-100000,…

0,0,0,0,0,0,0,…

由學生發表意見(可能按項與項之間的關系分為遞增數列、遞減數列、常數數列、擺動數列,也可能分為等差、等比兩類),統一一種分法,其中②③④⑥⑦為有共同性質的一類數列(學生看不出③的情況也無妨,得出定義后再考察③是否為).

二、講解新課

請學生說出數列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題.假設每經過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經過一個單位時間它分裂為兩個變形蟲,經過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數得到了一列數 這個數列也具有前面的幾個數列的共同特性,這是我們將要研究的另一類數列——. (這里播放變形蟲分裂的多媒體軟件的第一步)

(板書)

1.的定義(板書)

根據與等差數列的名字的區別與聯系,嘗試給下定義.學生一般回答可能不夠完美,多數情況下,有了等差數列的基礎是可以由學生概括出來的.教師寫出的定義,標注出重點詞語.

請學生指出②③④⑥⑦各自的公比,并思考有無數列既是等差數列又是.學生通過觀察可以發現③是這樣的數列,教師再追問,還有沒有其他的例子,讓學生再舉兩例.而后請學生概括這類數列的一般形式,學生可能說形如 的數列都滿足既是等差又是,讓學生討論后得出結論:當 時,數列 既是等差又是,當 時,它只是等差數列,而不是.教師追問理由,引出對的認識:

2.對定義的認識(板書)

1)的首項不為0;

2)的每一項都不為0,即

問題:一個數列各項均不為0是這個數列為的什么條件?

3)公比不為0.

數學式子表示的定義.

①.在這個式子的寫法上可能會有一些爭議,如寫成 ,可讓學生研究行不行,好不好;接下來再問,能否改寫為 ?為什么不能?

式子 給出了數列第 項與第 項的數量關系,但能否確定一個?(不能)確定一個需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式.

3.的通項公式(板書)

問題:用 表示第 .

①不完全歸納法

.

②疊乘法

,… ,這 個式子相乘得 ,所以 .

(板書)(1)的通項公式

得出通項公式后,讓學生思考如何認識通項公式.

(板書)(2)對公式的認識

由學生來說,最后歸結:

①函數觀點;

②方程思想(因在等差數列中已有認識,此處再復習鞏固而已).

這里強調方程思想解決問題.方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題).解題格式是什么?(不僅要會解題,還要注意規范表述的訓練)

如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節課再研究.同學可以試著編幾道題.

三、小結

1.本節課研究了的概念,得到了通項公式;

2.注意在研究內容與方法上要與等差數列相類比;

3.用方程的思想認識通項公式,并加以應用.

四、作業 (略)

五、板書設計 

.                                                   

1.的定義

2.對定義的認識

3.的通項公式

1)公式

2)對公式的認識

 

 

探究活動

將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設這張紙的厚度為0.01毫米.

參考答案:

30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度.如果紙再薄一些,比如紙厚0.001毫米,對折34次就超過珠穆朗瑪峰的高度了.還記得國王的承諾嗎?第31個格子中的米已經是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應是 粒,用計算器算一下吧(用對數算也行).

等比數列 相關內容:
  • 等比數列

    教學目標 1.理解的概念,掌握的通項公式,并能運用公式解決簡單的問題. (1)正確理解的定義,了解公比的概念,明確一個數列是的限定條件,能根據定義判斷一個數列是,了解等比中項的概念; (2)正確認識使用的表示法,能靈活運用通項公...

  • 等比數列的前n項和教學設計(精選4篇)

    一、教材分析:等比數列的前n項和是高中數學必修五第二章第3、3節的內容。它是“等差數列的前n項和”與“等比數列”內容的延續。這部分內容授課時間2課時,本節課作為第一課時,重在研究等比數列的前n項和公式的推導及簡單應用,教學中注...

  • 3.5 等比數列的前n項和(通用13篇)

    教學目標1.掌握等比數列前 項和公式,并能運用公式解決簡單的問題.(1)理解公式的推導過程,體會轉化的思想;(2)用方程的思想認識等比數列前 項和公式,利用公式知三求一;與通項公式結合知三求二;2.通過公式的靈活運用,進一步滲透方...

  • 3.5 等比數列的前n項和(通用9篇)

    教學目標1.把握等比數列前 項和公式,并能運用公式解決簡單的問題.(1)理解公式的推導過程,體會轉化的思想;(2)用方程的思想熟悉等比數列前 項和公式,利用公式知三求一;與通項公式結合知三求二;2.通過公式的靈活運用,進一步滲透方程的思想、...

  • 等差等比數列綜合問題

    教學目標 1.熟練運用等差、等比數列的概念、通項公式、前n項和式以及有關性質,分析和解決等差、等比數列的綜合問題. 2.突出方程思想的應用,引導學生選擇簡捷合理的運算途徑,提高運算速度和運算能力.教學重點與難點 用方程的觀點認識等...

  • 3.5 等比數列的前n項和(第一課時)

    教學目的:1.掌握等比數列的前n項和公式及公式證明思路.2.會用等比數列的前n項和公式解決有關等比數列的一些簡單問題。教學重點:等比數列的前n項和公式推導教學難點:靈活應用公式解決有關問題教學過程:一、復習等比數列的通項公式,有...

  • 等比數列的前n項和

    教學目標 1.把握等比數列前 項和公式,并能運用公式解決簡單的問題. (1)理解公式的推導過程,體會轉化的思想; (2)用方程的思想熟悉等比數列前 項和公式,利用公式知三求一;與通項公式結合知三求二; 2.通過公式的靈活運用,進一步滲透方程的思...

  • 說課題目:等比數列的前n項和(第一課時)

    (選自人教版高中數學第一冊(上)第三章第五節)一、教材分析1.從在教材中的地位與作用來看《等比數列的前n項和》是數列這一章中的一個重要內容,它不僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過...

  • 3.5 等比數列的前n項和(第二課時)

    教學目的:1.會用等比數列的通項公式和前n項和公式解決有關等比數列的 中知道三個數求另外兩個數的一些簡單問題 2.提高分析、解決問題能力. 教學重點:進一步熟練掌握等比數列的通項公式和前n項和公式. 教學難點:靈活使用公式解決問題 教...

  • 等比數列教學實錄

    師:上節課我們對等差數列進行了復習,在數列中另一類重要的數列是什么?生:等比數列.師:我們這節課復習等比數列.(點課題并板書)通過課前預習,請同學們思考下列幾個問題:1.等比數列的定義.2.等比數列通項公式、前n項和公式.3.等比中項...

  • 上學期 3.5等比數列的前n項和

    教學設計示例課題:等比數列前 項和的公式教學目標 (1)通過教學使學生掌握等比數列前 項和公式的推導過程,并能初步運用這一方法求一些數列的前 項和. (2)通過公式的推導過程,培養學生猜想、分析、綜合能力,提高學生的數學素質. (...

  • 上學期 3.4等比數列

    教學目標 1.通過教學使學生理解等比數列的概念,推導并掌握通項公式. 2.使學生進一步體會類比、歸納的思想,培養學生的觀察、概括能力. 3.培養學生勤于思考,實事求是的精神,及嚴謹的科學態度.教學重點,難點 重點、難點是等比數列的定義...

  • 等比數列的前n項和

    教學目標 1.掌握等比數列前 項和公式,并能運用公式解決簡單的問題. (1)理解公式的推導過程,體會轉化的思想; (2)用方程的思想認識等比數列前 項和公式,利用公式知三求一;與通項公式結合知三求二; 2.通過公式的靈活運用,進一步滲...

  • 等比數列的前n項和

    教學目標 1.掌握等比數列前 項和公式,并能運用公式解決簡單的問題. (1)理解公式的推導過程,體會轉化的思想; (2)用方程的思想認識等比數列前 項和公式,利用公式知三求一;與通項公式結合知三求二; 2.通過公式的靈活運用,進一步滲...

  • 等比數列的前n項和

    教學目標 1.掌握等比數列前 項和公式,并能運用公式解決簡單的問題. (1)理解公式的推導過程,體會轉化的思想; (2)用方程的思想認識等比數列前 項和公式,利用公式知三求一;與通項公式結合知三求二; 2.通過公式的靈活運用,進一步滲...

  • 高一數學教案
主站蜘蛛池模板: 鸡西市| 台东市| 喀喇沁旗| 揭西县| 七台河市| 乐东| 贵南县| 张掖市| 唐海县| 福州市| 当涂县| 洛宁县| 特克斯县| 商丘市| 万州区| 牙克石市| 延吉市| 黑龙江省| 东辽县| 安宁市| 兴隆县| 巢湖市| 屯昌县| 祁连县| 兰州市| 施甸县| 霸州市| 大悟县| 秭归县| 淮南市| 东宁县| 太和县| 正阳县| 泉州市| 思茅市| 普格县| 灌南县| 栖霞市| 广德县| 和硕县| 额尔古纳市|