函 數(shù) 對(duì) 稱 性 的 探 究
③函數(shù)y = f (x)與x-a = f (y + a)的圖像關(guān)于直線x-y = a成軸對(duì)稱。定理4與定理5中的①②證明留給讀者,現(xiàn)證定理5中的③ 設(shè)點(diǎn)p(x0 ,y0)是y = f (x)圖像上任一點(diǎn),則y0 = f (x0)。記點(diǎn)p( x ,y)關(guān)于直線x-y = a的軸對(duì)稱點(diǎn)為p‘(x1, y1),則x1 = a + y0 , y1 = x0-a ,∴x0 = a + y1 , y0= x1-a 代入y0 = f (x0)之中得x1-a = f (a + y1) ∴點(diǎn)p‘(x1, y1)在函數(shù)x-a = f (y + a)的圖像上。同理可證:函數(shù)x-a = f (y + a)的圖像上任一點(diǎn)關(guān)于直線x-y = a的軸對(duì)稱點(diǎn)也在函數(shù)y = f (x)的圖像上。故定理5中的③成立。推論:函數(shù)y = f (x)的圖像與x = f (y)的圖像關(guān)于直線x = y 成軸對(duì)稱。三、 三角函數(shù)圖像的對(duì)稱性列表函 數(shù)
對(duì)稱中心坐標(biāo)
對(duì)稱軸方程
y = sin x
( kπ, 0 )
x = kπ+π/2
y = cos x
( kπ+π/2 ,0 )
x = kπ
y = tan x
(kπ/2 ,0 )
無注:①上表中k∈z②y = tan x的所有對(duì)稱中心坐標(biāo)應(yīng)該是(kπ/2 ,0 ),而在岑申、王而冶主編的浙江教育出版社出版的21世紀(jì)高中數(shù)學(xué)精編第一冊(cè)(下)及陳兆鎮(zhèn)主編的廣西師大出版社出版的高一數(shù)學(xué)新教案(修訂版)中都認(rèn)為y = tan x的所有對(duì)稱中心坐標(biāo)是( kπ, 0 ),這明顯是錯(cuò)的。四、 函數(shù)對(duì)稱性應(yīng)用舉例例1:定義在r上的非常數(shù)函數(shù)滿足:f (10+x)為偶函數(shù),且f (5-x) = f (5+x),則f (x)一定是( ) (第十二屆希望杯高二 第二試題)(a)是偶函數(shù),也是周期函數(shù) (b)是偶函數(shù),但不是周期函數(shù) (c)是奇函數(shù),也是周期函數(shù) (d)是奇函數(shù),但不是周期函數(shù)解:∵f (10+x)為偶函數(shù),∴f (10+x) = f (10-x).∴f (x)有兩條對(duì)稱軸 x = 5與x =10 ,因此f (x)是以10為其一個(gè)周期的周期函數(shù), ∴x =0即y軸也是f (x)的對(duì)稱軸,因此f (x)還是一個(gè)偶函數(shù)。故選(a) 例2:設(shè)定義域?yàn)閞的函數(shù)y = f (x)、y = g(x)都有反函數(shù),并且f(x-1)和g-1(x-2)函數(shù)的圖像關(guān)于直線y = x對(duì)稱,若g(5) = 1999,那么f(4)=( )。 (a) 1999; (b); (c);(d)。 解:∵y = f(x-1)和y = g-1(x-2)函數(shù)的圖像關(guān)于直線y = x對(duì)稱,∴y = g-1(x-2) 反函數(shù)是y = f(x-1),而y = g-1(x-2)的反函數(shù)是:y = 2 + g(x), ∴f(x-1) = 2 + g(x), ∴有f(5-1) = 2 + g(5)=故f(4) = ,應(yīng)選(c)例3.設(shè)f(x)是定義在r上的偶函數(shù),且f(1+x)= f(1-x),當(dāng)-1≤x≤0時(shí),f (x) = - x,則f (8.6 ) = _________ (第八屆希望杯高二 第一試題)解:∵f(x)是定義在r上的偶函數(shù)∴x = 0是y = f(x)對(duì)稱軸;又∵f(1+x)= f(1-x) ∴x = 1也是y = f (x) 對(duì)稱軸。故y = f(x)是以2為周期的周期函數(shù),∴f (8.6 ) = f (8+0.6 ) = f (0.6 ) = f (-0.6 ) = 0.3例4.函數(shù) y = sin (2x + )的圖像的一條對(duì)稱軸的方程是( )(92全國(guó)高考理) (a) x = - (b) x = - (c) x = (d) x =