夜夜躁爽日日躁狠狠躁视频,亚洲国产精品无码久久一线,丫鬟露出双乳让老爷玩弄,第一次3q大战的经过和结果

首頁 > 教案下載 > 數(shù)學(xué)教案 > 初中數(shù)學(xué)教案 > 八年級數(shù)學(xué)教案 > 不等關(guān)系(精選6篇)

不等關(guān)系

發(fā)布時(shí)間:2023-07-14

不等關(guān)系(精選6篇)

不等關(guān)系 篇1

  一、教學(xué)目標(biāo): 1、感受生活中存在著大量的不等關(guān)系,了解不等式的意義。 2、體會(huì)不等式是研究量與量之間關(guān)系的重要模型之一. 3、經(jīng)歷由具體事例建立不等式模型的過程,進(jìn)一步提高學(xué)生的符號(hào)感. 二、教材分析及教學(xué)建議: 1.教材p2不等關(guān)系的場景最主要的設(shè)置目的是由此問題產(chǎn)生許多的不等式,進(jìn)而引出不等式的概念,從諸多不等式的建立過程中,體會(huì)不等式的作用與意義。通過合情推理獲得猜想:這里對于猜想是否正確并不作研究,而意在為研究不等式的性質(zhì)打下伏筆. 2.p4的做一做的設(shè)計(jì)意圖是想通過學(xué)生感興趣的問題建立不等關(guān)系,從中體會(huì)不等關(guān)系的普遍性,這里建立的不等關(guān)系均為一次的,也為研究的重點(diǎn)不等式---一次不等式打基礎(chǔ).p9的議一議意在讓學(xué)生歸納出不等式的概念. 三、教學(xué)重點(diǎn)及難點(diǎn): 重 點(diǎn):理解不等式的意義能夠正確地表示一些簡單的不等式關(guān)系。難 點(diǎn):根據(jù)題意正確列出不等式,通過把大量實(shí)例轉(zhuǎn)化為不等式模型加深對不等式的理解。四、教學(xué)過程: 一、問題引入不等關(guān)系在現(xiàn)實(shí)生活中無處不在!你能舉出一些與不等關(guān)系有關(guān)的現(xiàn)實(shí)生活例子嗎?二、自主學(xué)習(xí)與探索出示問題如圖1-1,用用根長度均為l㎝的繩子,分別圍成一個(gè)正方形和圓。用l表示下圖的面積?師先讓學(xué)生計(jì)算出上面兩個(gè)圖形的面積:(答案:所圍成的正方形的面積可以表示為 ,圓的面積可以表示為 。)(1)如果要使正方形的面積不大于25㎝2,那么繩長l應(yīng)滿足怎樣的關(guān)系式?要使正方形的面積不大于25㎝2,就是 ,即 。 (2)如果要使圓的面積大于100㎝2,那么繩長l應(yīng)滿足怎樣的關(guān)系式?要使圓的面積大于100㎝2,就是 >100,即 >100 (3)當(dāng)l=8時(shí),正方形和圓的面積哪個(gè)大?l=12呢?當(dāng)l=8時(shí),正方形的面積為 ,圓的面積為 , 4<5.1,此時(shí)圓的面積大。當(dāng)l=12時(shí),正方形的面積為 ,圓的面積為 , 9<11.5,此時(shí)還是圓的面積大。(4)改變l的取值再試一試,在這個(gè)過程中你能得到什么啟發(fā)? 不論怎樣改變l的取值,通過計(jì)算發(fā)現(xiàn):總是圓的面積大,因此,我們可以猜想,用長度增色為l㎝的兩根繩子分別圍成一個(gè)正方形和圓,無論l取何值,圓的面積總大于正方形的面積,即> 三、做一做 議一議(1)通過測量一棵樹的樹圍(樹干的周長)可能計(jì)算出它的樹齡,通常規(guī)定以樹干離地面1.5m的地方作為測量部位。某樹栽種時(shí)的樹圍為5㎝,以后樹圍每年增加約3㎝,這棵樹至少要生長多少年其樹圍才能超過2.4m?(只列關(guān)系式)(2)燃放某種禮花彈時(shí),為了確保安全,人在點(diǎn)燃導(dǎo)火線后要在燃放前轉(zhuǎn)移到10m以外的安全區(qū)域。已知導(dǎo)火線的燃燒速度為0.2m/s,人離開的速度為4m/s,導(dǎo)火線的長度x(m)應(yīng)滿足怎樣的關(guān)系式?不等式:一般地,用符號(hào)“<”(或“≤”)“>”(或“≥”)連接的式子叫做不等式。四、練習(xí) 1、用不等式表示: a的相反數(shù)是正數(shù); m與2的差小于 ; x的 與4的和不是正數(shù); y的一半與x的2倍的和不小于3。下列各數(shù): ,-4, ,0,5.2,3其中使不等式 >1,成立是 ( ) a.-4, ,5.2 b. ,5.2,3 c. ,0,3 d. ,5.2 有理數(shù)a,b在數(shù)軸上的位置如圖1-2所示,所 的值 ( ) a.>0 b.<0 c.=0 d.≥0 五、小結(jié): 六、課外作業(yè):課本第5頁“習(xí)題1.1”(注意按照作業(yè)要求完成作

不等關(guān)系 篇2

  教學(xué)分析

  本節(jié)課的研究是對初中不等式學(xué)習(xí)的延續(xù)和拓展,也是實(shí)數(shù)理論的進(jìn)一步發(fā)展.在本節(jié)課的學(xué)習(xí)過程中,將讓學(xué)生回憶實(shí)數(shù)的基本理論,并能用實(shí)數(shù)的基本理論來比較兩個(gè)代數(shù)式的大小.

  通過本節(jié)課的學(xué)習(xí),讓學(xué)生從一系列的具體問題情境中,感受到在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,并充分認(rèn)識(shí)不等關(guān)系的存在與應(yīng)用.對不等關(guān)系的相關(guān)素材,用數(shù)學(xué)觀點(diǎn)進(jìn)行觀察、歸納、抽象,完成量與量的比較過程.即能用不等式或不等式組把這些不等關(guān)系表示出來.

  在本節(jié)課的學(xué)習(xí)過程中還安排了一些簡單的、學(xué)生易于處理的問題,其用意在于讓學(xué)生注意對數(shù)學(xué)知識(shí)和方法的應(yīng)用,同時(shí)也能激發(fā)學(xué)生的學(xué)習(xí)興趣,并由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望.根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用再現(xiàn)、回憶得出實(shí)數(shù)的基本理論,并能用實(shí)數(shù)的基本理論來比較兩個(gè)代數(shù)式的大小.

  在本節(jié)教學(xué)中,教師可讓學(xué)生閱讀書中實(shí)例,充分利用數(shù)軸這一簡單的數(shù)形結(jié)合工具,直接用實(shí)數(shù)與數(shù)軸上點(diǎn)的一一對應(yīng)關(guān)系,從數(shù)與形兩方面建立實(shí)數(shù)的順序關(guān)系.要在溫故知新的基礎(chǔ)上提高學(xué)生對不等式的認(rèn)識(shí).

  三維目標(biāo)

  1.在學(xué)生了解不等式產(chǎn)生的實(shí)際背景下,利用數(shù)軸回憶實(shí)數(shù)的基本理論,理解實(shí)數(shù)的大小關(guān)系,理解實(shí)數(shù)大小與數(shù)軸上對應(yīng)點(diǎn)位置間的關(guān)系.

  2.會(huì)用作差法判斷實(shí)數(shù)與代數(shù)式的大小,會(huì)用配方法判斷二次式的大小和范圍.

  3.通過溫故知新,提高學(xué)生對不等式的認(rèn)識(shí),激發(fā)學(xué)生的學(xué)習(xí)興趣,體會(huì)數(shù)學(xué)的奧秘與數(shù)學(xué)的結(jié)構(gòu)美.

  重點(diǎn)難點(diǎn)

  教學(xué)重點(diǎn):比較實(shí)數(shù)與代數(shù)式的大小關(guān)系,判斷二次式的大小和范圍.

  教學(xué)難點(diǎn):準(zhǔn)確比較兩個(gè)代數(shù)式的大小.

  課時(shí)安排

  1課時(shí)

  教學(xué)過程

  導(dǎo)入新課

  思路1.(章頭圖導(dǎo)入)通過多媒體展示衛(wèi)星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學(xué)生帶入“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同”的大自然和浩瀚的宇宙中,使學(xué)生在具體情境中感受到不等關(guān)系在現(xiàn)實(shí)世界和日常生活中是大量存在的,由此產(chǎn)生用數(shù)學(xué)研究不等關(guān)系的強(qiáng)烈愿望,自然地引入新課.

  思路2.(情境導(dǎo)入)列舉出學(xué)生身體的高矮、身體的輕重、距離學(xué)校路程的遠(yuǎn)近、百米賽跑的時(shí)間、數(shù)學(xué)成績的多少等現(xiàn)實(shí)生活中學(xué)生身邊熟悉的事例,描述出某種客觀事物在數(shù)量上存在的不等關(guān)系.這些不等關(guān)系怎樣在數(shù)學(xué)上表示出來呢?讓學(xué)生自由地展開聯(lián)想,教師組織不等關(guān)系的相關(guān)素材,讓學(xué)生用數(shù)學(xué)的觀點(diǎn)進(jìn)行觀察、歸納,使學(xué)生在具體情境中感受到不等關(guān)系與相等關(guān)系一樣,在現(xiàn)實(shí)世界和日常生活中大量存在著.這樣學(xué)生會(huì)由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望,從而進(jìn)入進(jìn)一步的探究學(xué)習(xí),由此引入新課.

  推進(jìn)新課

  新知探究

  提出問題

  1回憶初中學(xué)過的不等式,讓學(xué)生說出“不等關(guān)系”與“不等式”的異同.怎樣利用不等式研究及表示不等關(guān)系?

  2在現(xiàn)實(shí)世界和日常生活中,既有相等關(guān)系,又存在著大量的不等關(guān)系.你能舉出一些實(shí)際例子嗎?

  3數(shù)軸上的任意兩點(diǎn)與對應(yīng)的兩實(shí)數(shù)具有怎樣的關(guān)系?

  4任意兩個(gè)實(shí)數(shù)具有怎樣的關(guān)系?用邏輯用語怎樣表達(dá)這個(gè)關(guān)系?

  活動(dòng):教師引導(dǎo)學(xué)生回憶初中學(xué)過的不等式概念,使學(xué)生明確“不等關(guān)系”與“不等式”的異同.不等關(guān)系強(qiáng)調(diào)的是關(guān)系,可用符號(hào)“>”“b”“a

  教師與學(xué)生一起舉出我們?nèi)粘I钪胁坏汝P(guān)系的例子,可讓學(xué)生充分合作討論,使學(xué)生感受到現(xiàn)實(shí)世界中存在著大量的不等關(guān)系.在學(xué)生了解了一些不等式產(chǎn)生的實(shí)際背景的前提下,進(jìn)一步學(xué)習(xí)不等式的有關(guān)內(nèi)容.

  實(shí)例1:某天的天氣預(yù)報(bào)報(bào)道,最高氣溫32 ℃,最低氣溫26 ℃.

  實(shí)例2:對于數(shù)軸上任意不同的兩點(diǎn)A、B,若點(diǎn)A在點(diǎn)B的左邊,則xA

  實(shí)例3:若一個(gè)數(shù)是非負(fù)數(shù),則這個(gè)數(shù)大于或等于零.

  實(shí)例4:兩點(diǎn)之間線段最短.

  實(shí)例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.

  實(shí)例6:限速40 km/h的路標(biāo)指示司機(jī)在前方路段行駛時(shí),應(yīng)使汽車的速度v不超過40 km/h.

  實(shí)例7:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.

  教師進(jìn)一步點(diǎn)撥:能夠發(fā)現(xiàn)身邊的數(shù)學(xué)當(dāng)然很好,這說明同學(xué)們已經(jīng)走進(jìn)了數(shù)學(xué)這門學(xué)科,但作為我們研究數(shù)學(xué)的人來說,能用數(shù)學(xué)的眼光、數(shù)學(xué)的觀點(diǎn)進(jìn)行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個(gè)研究數(shù)學(xué)的人必須要做的,那么,我們可以用我們所研究過的什么知識(shí)來表示這些不等關(guān)系呢?學(xué)生很容易想到,用不等式或不等式組來表示這些不等關(guān)系.那么不等式就是用不等號(hào)將兩個(gè)代數(shù)式連結(jié)起來所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.

  教師引導(dǎo)學(xué)生將上述的7個(gè)實(shí)例用不等式表示出來.實(shí)例1,若用t表示某天的氣溫,則26 ℃≤t≤32 ℃.實(shí)例3,若用x表示一個(gè)非負(fù)數(shù),則x≥0.實(shí)例5,|AC|+|BC|>|AB|,如下圖.

  |AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.

  |AB|-|BC|b,a0a>b;a-b=0a=b;a-bg(x) B.f(x)=g(x)

  C.f(x)

  答案:A

  解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).

  2.已知x≠0,比較(x2+1)2與x4+x2+1的大小.

  解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.

  ∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.

  例2比較下列各組數(shù)的大小(a≠b).

  (1)a+b2與21a+1b(a>0,b>0);

  (2)a4-b4與4a3(a-b).

  活動(dòng):比較兩個(gè)實(shí)數(shù)的大小,常根據(jù)實(shí)數(shù)的運(yùn)算性質(zhì)與大小順序的關(guān)系,歸結(jié)為判斷它們的差的符號(hào)來確定.本例可由學(xué)生獨(dú)立完成,但要點(diǎn)撥學(xué)生在最后的符號(hào)判斷說理中,要理由充分,不可忽略這點(diǎn).

  解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.

  ∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.

  (2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)

  =(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]

  =-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].

  ∵2a2+(a+b)2≥0(當(dāng)且僅當(dāng)a=b=0時(shí)取等號(hào)),

  又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]y,且y≠0,比較xy與1的大小.

  活動(dòng):要比較任意兩個(gè)數(shù)或式的大小關(guān)系,只需確定它們的差與0的大小關(guān)系.

  解:xy-1=x-yy.

  ∵x>y,∴x-y>0.

  當(dāng)y0時(shí),x-yy>0,即xy-1>0.∴xy>1.

  點(diǎn)評:當(dāng)字母y取不同范圍的值時(shí),差xy-1的正負(fù)情況不同,所以需對y分類討論.

  例3建筑設(shè)計(jì)規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,且這個(gè)比值越大,住宅的采光條件越好.試問:同時(shí)增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請說明理由.

  活動(dòng):解題關(guān)鍵首先是把文字語言轉(zhuǎn)換成數(shù)學(xué)語言,然后比較前后比值的大小,采用作差法.

  解:設(shè)住宅窗戶面積和地板面積分別為a、b,同時(shí)增加的面積為m,根據(jù)問題的要求a

  由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,

  因此a+mb+m>ab≥10%.

  所以同時(shí)增加相等的窗戶面積和地板面積后,住宅的采光條件變好了.

  點(diǎn)評:一般地,設(shè)a、b為正實(shí)數(shù),且a0,則a+mb+m>ab.

  變式訓(xùn)練

  已知a1,a2,…為各項(xiàng)都大于零的等比數(shù)列,公比q≠1,則( )

  A.a1+a8>a4+a5 B.a1+a8

  C.a1+a8=a4+a5 D.a1+a8與a4+a5大小不確定

  答案:A

  解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4

  =a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).

  ∵{an}各項(xiàng)都大于零,∴q>0,即1+q>0.

  又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.

  知能訓(xùn)練

  1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的個(gè)數(shù)為( )

  A.3 B.2 C.1 D.0

  2.比較2x2+5x+9與x2+5x+6的大小.

  答案:

  1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,

  ③x2+y2-2xy=(x-y)2≥0.

  ∴只有①恒成立.

  2.解:因?yàn)?x2+5x+9-(x2+5x+6)=x2+3>0,

  所以2x2+5x+9>x2+5x+6.

  課堂小結(jié)

  1.教師與學(xué)生共同完成本節(jié)課的小結(jié),從實(shí)數(shù)的基本性質(zhì)的回顧,到兩個(gè)實(shí)數(shù)大小的比較方法;從例題的活動(dòng)探究點(diǎn)評,到緊跟著的變式訓(xùn)練,讓學(xué)生去繁就簡,聯(lián)系舊知,將本節(jié)課所學(xué)納入已有的知識(shí)體系中.

  2.教師畫龍點(diǎn)睛,點(diǎn)撥利用實(shí)數(shù)的基本性質(zhì)對兩個(gè)實(shí)數(shù)大小比較時(shí)易錯(cuò)的地方.鼓勵(lì)學(xué)有余力的學(xué)生對節(jié)末的思考與討論在課后作進(jìn)一步的探究.

  作業(yè)

  習(xí)題3—1A組3;習(xí)題3—1B組2.

  設(shè)計(jì)感想

  1.本節(jié)設(shè)計(jì)關(guān)注了教學(xué)方法的優(yōu)化.經(jīng)驗(yàn)告訴我們:課堂上應(yīng)根據(jù)具體情況,選擇、設(shè)計(jì)最能體現(xiàn)教學(xué)規(guī)律的教學(xué)過程,不宜長期使用一種固定的教學(xué)方法,或原封不動(dòng)地照搬一種實(shí)驗(yàn)?zāi)J?各種教學(xué)方法中,沒有一種能很好地適應(yīng)一切教學(xué)活動(dòng).也就是說,世上沒有萬能的教學(xué)方法.針對個(gè)性,靈活變化,因材施教才是成功的施教靈藥.

  2.本節(jié)設(shè)計(jì)注重了難度控制.不等式內(nèi)容應(yīng)用面廣,可以說與其他所有內(nèi)容都有交匯,歷來是高考的重點(diǎn)與熱點(diǎn).作為本章開始,可以適當(dāng)開闊一些,算作拋磚引玉,讓學(xué)生有個(gè)自由探究聯(lián)想的平臺(tái),但不宜過多向外拓展,以免對學(xué)生產(chǎn)生負(fù)面影響.

  3.本節(jié)設(shè)計(jì)關(guān)注了學(xué)生思維能力的訓(xùn)練.訓(xùn)練學(xué)生的思維能力,提升思維的品質(zhì),是數(shù)學(xué)教師直面的重要課題,也是中學(xué)數(shù)學(xué)教育的主線.采用一題多解有助于思維的發(fā)散性及靈活性,克服思維的僵化.變式訓(xùn)練教學(xué)又可以拓展學(xué)生思維視野的廣度,解題后的點(diǎn)撥反思有助于學(xué)生思維批判性品質(zhì)的提升.

  備課資料

  備用習(xí)題

  1.比較(x-3)2與(x-2)(x-4)的大小.

  2.試判斷下列各對整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.

  3.已知x>0,求證:1+x2>1+x .

  4.若x

  5.設(shè)a>0,b>0,且a≠b,試比較aabb與abba的大小.

  參考答案:

  1.解:∵(x-3)2-(x-2)(x-4)

  =(x2-6x+9)-(x2-6x+8)

  =1>0,

  ∴(x-3)2>(x-2)(x-4).

  2.解:(1)(m2-2m+5)-(-2m+5)

  =m2-2m+5+2m-5

  =m2.

  ∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.

  ∴m2-2m+5≥-2m+5.

  (2)(a2-4a+3)-(-4a+1)

  =a2-4a+3+4a-1

  =a2+2.

  ∵a2≥0,∴a2+2≥2>0.

  ∴a2-4a+3>-4a+1.

  3.證明:∵(1+x2)2-(1+x)2

  =1+x+x24-(x+1)

  =x24,

  又∵x>0,∴x24>0.

  ∴(1+x2)2>(1+x)2.

  由x>0,得1+x2>1+x.

  4.解:(x2+y2)(x-y)-(x2-y2)(x+y)

  =(x-y)[(x2+y2)-(x+y)2]

  =-2xy(x-y).

  ∵x0,x-y0.

  ∴(x2+y2)(x-y)>(x2-y2)(x+y).

  5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,

  當(dāng)a>b>0時(shí),ab>1,a-b>0,

  則(ab)a-b>1,于是aabb>abba.

  當(dāng)b>a>0時(shí),0

  則(ab)a-b>1.

  于是aabb>abb a.

  綜上所述,對于不相等的正數(shù)a、b,都有aabb>abba.

不等關(guān)系 篇3

  整體設(shè)計(jì)

  教學(xué)分析

  本節(jié)課的研究是對初中不等式學(xué)習(xí)的延續(xù)和拓展,也是實(shí)數(shù)理論的進(jìn)一步發(fā)展.在本節(jié)課的學(xué)習(xí)過程中,將讓學(xué)生回憶實(shí)數(shù)的基本理論,并能用實(shí)數(shù)的基本理論來比較兩個(gè)代數(shù)式的大小.

  通過本節(jié)課的學(xué)習(xí), 讓學(xué)生從一系列的具體問題情境中,感受到在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,并充分認(rèn)識(shí)不等關(guān)系的存在與應(yīng)用.對不等關(guān)系的相關(guān)素材,用數(shù)學(xué)觀點(diǎn)進(jìn)行觀察、歸納、抽象,完成量與量的比較過程.即能用不等式或不等式組把這些不等關(guān)系表示出來.在本節(jié)課的學(xué)習(xí)過程中還安排了一些簡單的、學(xué)生易于處理的問題,其用意在于讓學(xué)生注意對數(shù)學(xué)知識(shí)和方法的應(yīng)用,同時(shí)也能激發(fā)學(xué)生的學(xué)習(xí)興趣,并由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望.根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用再現(xiàn)、回憶得出實(shí)數(shù)的基本理論,并能用實(shí)數(shù)的基本理論來比較兩個(gè)代數(shù)式的大小.

  在本節(jié)教學(xué)中,教師可讓學(xué)生閱讀書中實(shí)例,充分利用數(shù)軸這一簡單的數(shù)形結(jié)合工具,直接用實(shí)數(shù)與數(shù)軸上 點(diǎn)的一一對應(yīng)關(guān)系,從數(shù)與形兩方面建立實(shí)數(shù)的順序關(guān)系.要在溫故知新的基礎(chǔ)上提高學(xué)生對不等式的認(rèn)識(shí).

  三維目標(biāo)

  1.在學(xué)生了解不等式產(chǎn)生的實(shí)際背景下,利用數(shù)軸回憶實(shí)數(shù)的基本理論,理解實(shí)數(shù)的大小關(guān)系,理解實(shí)數(shù)大小與數(shù)軸上對應(yīng)點(diǎn)位置間的關(guān)系.

  2.會(huì)用作差法判斷實(shí)數(shù)與代數(shù)式的大小,會(huì)用配方法判斷二次式的大小和范圍.

  3.通過溫故知新,提高學(xué)生對不等式的認(rèn)識(shí),激發(fā)學(xué)生的學(xué)習(xí)興趣,體會(huì)數(shù)學(xué)的奧秘與數(shù)學(xué)的結(jié)構(gòu)美.

  重點(diǎn)難點(diǎn)

  教學(xué)重點(diǎn):比較實(shí)數(shù)與代數(shù)式的大小關(guān)系,判斷二次式的大小和范圍.

  教學(xué)難點(diǎn):準(zhǔn)確比較兩個(gè)代數(shù)式的大小.

  課時(shí)安排

  1課時(shí)

  教學(xué)過程

  導(dǎo)入新課

  思路1.(章頭圖導(dǎo)入)通過多媒體展示衛(wèi)星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學(xué)生帶入“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同”的大自然和浩瀚的宇宙中,使學(xué)生在具體情境中感受到不等關(guān)系在現(xiàn)實(shí)世界和日常生活中是大量存在的,由此產(chǎn)生用數(shù)學(xué)研究不等關(guān)系的強(qiáng)烈愿望,自然地引入新課.

  思路2.(情境導(dǎo)入)列舉出學(xué)生身體的高矮、身體的輕重、距離學(xué)校路程的遠(yuǎn)近、百米賽跑的時(shí)間、數(shù)學(xué)成績的多少等現(xiàn)實(shí)生活中學(xué)生身邊熟悉的事例,描述出某種客觀事物在數(shù)量上存在的不等關(guān)系.這些不等關(guān)系怎樣在數(shù)學(xué)上表示出來呢?讓學(xué)生自由地展開聯(lián)想,教師組織不等關(guān)系的相關(guān)素材,讓學(xué) 生用數(shù)學(xué)的觀點(diǎn)進(jìn)行觀察、歸納,使學(xué)生在具體情境中感受到不等關(guān)系與相等關(guān)系一樣,在現(xiàn)實(shí)世界和日常生活中大量存在著.這樣學(xué)生會(huì)由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望,從而進(jìn)入進(jìn)一步的探究學(xué)習(xí),由此引入新課.

  推進(jìn)新課

  新知探究

  提出問題

  1回憶初中學(xué)過的不等式,讓學(xué)生說出“不等關(guān)系”與“不等式”的異同.怎樣利用不等式研究及表示不等關(guān)系?

  2在現(xiàn)實(shí)世界和日常生活中,既有相等關(guān)系,又存在著大量的不等關(guān)系.你能舉出一些實(shí)際例子嗎?

  3數(shù)軸上的任意兩 點(diǎn)與對應(yīng)的兩實(shí)數(shù)具有怎樣的關(guān)系?

  4任意兩個(gè)實(shí)數(shù)具有怎樣的關(guān)系?用邏輯用語怎樣表達(dá)這個(gè)關(guān)系?

  活動(dòng):教師引導(dǎo)學(xué)生回憶初中學(xué)過的不等式概念,使學(xué)生明確“不等關(guān)系”與“不等式”的異同.不等關(guān)系強(qiáng)調(diào)的是關(guān)系,可用符號(hào)“>”“b”“a

  教師與學(xué)生一起舉出我們?nèi)粘I钪胁坏汝P(guān)系的例子,可讓學(xué)生充分合作討論,使學(xué)生感受到現(xiàn)實(shí)世界中存在著大量的不等關(guān)系.在學(xué)生了解了一些不等式產(chǎn)生的實(shí)際背景的前提下,進(jìn)一步學(xué)習(xí)不等式的有關(guān)內(nèi)容.

  實(shí)例1:某天的天氣預(yù)報(bào)報(bào)道,氣溫32 ℃,最低氣溫26 ℃.

  實(shí)例2:對于數(shù)軸上任意不同的兩點(diǎn)A、B,若點(diǎn)A在點(diǎn)B的左邊,則xA

  實(shí)例3:若一個(gè)數(shù)是非負(fù)數(shù),則這個(gè)數(shù)大于或等于零.

  實(shí)例4:兩點(diǎn)之間線段最短.

  實(shí)例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.

  實(shí)例6:限速40 km/h的路標(biāo)指示司機(jī)在前方路段行駛時(shí),應(yīng)使汽車的速度v不超過40 km/h.

  實(shí)例7:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.

  教師進(jìn)一步點(diǎn)撥:能夠發(fā)現(xiàn)身 邊的數(shù)學(xué)當(dāng)然很好,這說明同學(xué)們已經(jīng)走進(jìn)了數(shù)學(xué)這門學(xué)科,但作為我們研究數(shù)學(xué)的人來說,能用數(shù)學(xué)的眼光、數(shù)學(xué)的觀點(diǎn)進(jìn)行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個(gè)研究數(shù)學(xué)的人必須要做的,那么,我們可以用我們所研究過的什么知識(shí)來表示這些不等關(guān)系呢?學(xué)生很容易想到,用不等式或不等式組來表示這些不等關(guān)系.那么不等式就是用不等號(hào)將兩個(gè)代數(shù)式連結(jié)起來所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.

  教師引導(dǎo)學(xué)生將上述的7個(gè)實(shí)例用不等式表示出來.實(shí)例1,若用t表示某天的氣溫,則26 ℃≤t≤32 ℃.實(shí)例3,若用x表示一個(gè)非負(fù)數(shù),則x≥0.實(shí)例5,|AC|+|BC|>|AB|,如下圖.

  |AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.

  |AB|-|BC|b,a應(yīng)用示例

  例1(教材本節(jié)例1和例2)

  活動(dòng):通過兩例讓學(xué)生熟悉兩個(gè)代數(shù)式的大小比較的基本方法:作差,配方法.

  點(diǎn)評:本節(jié)兩例的求解,是借助因式分解和應(yīng)用配方法完成的,這兩種方法是代數(shù)式變形時(shí)經(jīng)常使用的方法,應(yīng)讓學(xué)生熟練掌握.

  變式訓(xùn)練

  1.若f(x)=3x2-x+1,g(x)=2x2+x-1,則f(x)與g(x)的大小關(guān)系是(  )

  A.f(x)>g(x)       B.f(x)=g(x)

  C.f(x)

  答案:A

  解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).

  2.已知x≠0,比較(x2+1)2與x4+x2+1的大小.

  解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.

  ∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.

  例2比較下列各組數(shù)的大小(a≠b).

  (1)a+b2與21a+1b(a>0,b>0);

  (2)a4-b4與4a3(a-b).

  活動(dòng):比較兩個(gè)實(shí)數(shù)的大小,常根據(jù)實(shí)數(shù)的運(yùn)算性質(zhì)與大小順序的關(guān)系,歸結(jié)為判斷它們的差的符號(hào)來確定.本例可由學(xué)生獨(dú)立完成,但要點(diǎn)撥學(xué)生在最后的符號(hào)判斷說理中,要理由充分,不可忽略這點(diǎn).

  解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.

  ∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.

  (2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)

  =(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]

  =-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].

  ∵2a2+(a+b)2≥0(當(dāng)且僅當(dāng)a=b=0時(shí)取等號(hào)),

  又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]y,且y≠0,比較xy與1的大小.

  活動(dòng):要比較任意兩個(gè)數(shù)或式的大小關(guān)系,只需確定它們的差與0的大小關(guān)系.

  解:xy-1=x-yy.

  ∵x>y,∴x-y>0.

  當(dāng)y0時(shí),x-yy>0,即xy-1>0.∴xy>1.

  點(diǎn)評:當(dāng)字母y取不同范圍的值時(shí),差xy-1的正負(fù)情況不同,所以需對y分類討論.

  例3建筑設(shè)計(jì)規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,且這個(gè)比值越大,住宅的采光條件越好.試問:同時(shí)增加相等的窗戶面積和地板面積, 住宅的采光條件是變好了,還是變壞了?請說明理由.

  活動(dòng):解題關(guān)鍵首先是把文 字語言轉(zhuǎn)換成數(shù)學(xué)語言,然后比較前后比值的大小,采用作差法.

  解:設(shè)住宅窗戶面積和地板面積分別為a、b,同時(shí)增加的面積為m,根據(jù)問題的要求a

  由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,

  因此a+mb+m>ab≥10%.

  所以同時(shí)增加相等的窗戶面積和地板面積后,住宅的采光條件變好了.

  點(diǎn)評:一般地,設(shè)a、b為正實(shí)數(shù),且a

  變式訓(xùn)練

  已知a1,a2,…為各項(xiàng)都大于零的等比數(shù)列,公比q≠1,則(  )

  A.a1+a8>a4+a5        B.a1+a8

  C.a1+a8=a4+a5 D.a1+a8與a4+a5大小不確定

  答案:A

  解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4

  =a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).

  ∵{an}各項(xiàng)都大于零,∴q>0,即1+q>0.

  又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.

  課堂小結(jié)

  1.教師與學(xué)生共同完成本節(jié)課的小結(jié),從實(shí)數(shù)的基本性質(zhì)的回顧,到兩個(gè)實(shí)數(shù)大小的比較方法;從例題的活動(dòng)探究點(diǎn)評,到緊跟著的變式訓(xùn)練,讓學(xué)生去繁就簡,聯(lián)系舊知,將本節(jié)課所學(xué)納入已有的知識(shí)體系中.

  2.教師畫龍點(diǎn)睛,點(diǎn)撥利用實(shí)數(shù)的基本性質(zhì)對兩個(gè)實(shí)數(shù)大小比較時(shí)易錯(cuò)的地方.鼓勵(lì)學(xué)有余力的學(xué)生對節(jié)末的思考與討論在課后作進(jìn)一步的探究.

  作業(yè)

  習(xí)題3—1A組3;習(xí)題3—1B組2.

  設(shè)計(jì)感想

  1.本節(jié)設(shè)計(jì)關(guān)注了教學(xué)方法 的優(yōu)化.經(jīng)驗(yàn)告訴我們:課堂上應(yīng)根據(jù)具體情況,選擇、設(shè)計(jì)最能體現(xiàn)教學(xué)規(guī)律的教學(xué) 過程,不宜長期使用一種固定的教學(xué)方法,或原封不動(dòng)地照搬一種實(shí)驗(yàn)?zāi)J?各種教學(xué)方法中,沒有一種能很好地適應(yīng)一切教學(xué)活動(dòng).也就是說,世上沒有萬能的教學(xué)方法.針對個(gè)性,靈活變化,因材施教才是成功的施教靈藥.

  2.本節(jié)設(shè)計(jì)注重了難度控制.不等式內(nèi)容應(yīng)用面廣,可以說與其他所有內(nèi)容都有交匯,歷 來是高考的重點(diǎn)與熱點(diǎn).作為本章開始,可以適當(dāng)開闊一些,算作拋磚引玉,讓學(xué)生有個(gè)自由探究聯(lián)想的平臺(tái),但不宜過多向外拓展,以免對學(xué)生產(chǎn)生負(fù)面影響.

  3.本節(jié)設(shè)計(jì)關(guān)注了學(xué)生思維能力的訓(xùn)練.訓(xùn)練學(xué)生的思維能力,提升思維的品質(zhì),是數(shù)學(xué)教師直面的重要課題,也是中學(xué)數(shù)學(xué)教育的主線.采用一題多解有助于思維的發(fā)散性及靈活性,克服思維的僵化.變式訓(xùn)練教學(xué)又可以拓展學(xué)生思維視野的廣度,解題后的點(diǎn)撥反思有助于學(xué)生思維批判性品質(zhì)的提升.

不等關(guān)系 篇4

  (一)教學(xué)目標(biāo)

  1.知識(shí)與技能:使學(xué)生感受到在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,在學(xué)生了解了一些不等式(組)產(chǎn)生的實(shí)際背景的前提下,學(xué)習(xí)不等式的有關(guān)內(nèi)容。

  2.過程與方法:以問題方式代替例題,學(xué)習(xí)如何利用不等式研究及表示不等式,利用不等式的有關(guān)基本性質(zhì)研究不等關(guān)系;

  3.情態(tài)與價(jià)值:通過學(xué)生在學(xué)習(xí)過程中的感受、體驗(yàn)、認(rèn)識(shí)狀況及理解程度,注重問題情境、實(shí)際背景的的設(shè)置,通過學(xué)生對問題的探究思考,廣泛參與,改變學(xué)生學(xué)習(xí)方式,提高學(xué)習(xí)質(zhì)量。

  (二)教學(xué)重、難點(diǎn)

  重點(diǎn):用不等式(組)表示實(shí)際問題中的不等關(guān)系,并用不等式(組)研究含有不等關(guān)系的問題,理解不等式(組)對于刻畫不等關(guān)系的意義和價(jià)值。

  難點(diǎn):用不等式(組)正確表示出不等關(guān)系。

  (三)教學(xué)設(shè)想

  [創(chuàng)設(shè)問題情境]

  問題1:設(shè)點(diǎn)A與平面的距離為d,B為平面上的任意一點(diǎn),則d≤。

  問題2:某種雜志原以每本2.5元的價(jià)格銷售,可以售出8萬本。根據(jù)市場調(diào)查,若單價(jià)每提高0.1元,銷售量就可能相應(yīng)減少20xx本。若把提價(jià)后雜志的定價(jià)設(shè)為x元,怎樣用不等式表示銷售的總收入仍不低于20萬元?

  分析:若雜志的定價(jià)為x元,則銷售的總收入為萬元。那么不等關(guān)系“銷售的總收入不低于20萬元”可以表示為不等式≥20

  問題3:某鋼鐵廠要把長度為4000mm的鋼管截成500mm和600mm兩種,按照生產(chǎn)的要求,600mm鋼管的數(shù)量不能超過500mm鋼管的3倍。怎樣寫出滿足上述所有不等關(guān)系的不等式呢?

  分析:假設(shè)截得500mm的鋼管x根,截得600mm的鋼管y根..

  根據(jù)題意,應(yīng)有如下的不等關(guān)系:

  (1)解得兩種鋼管的總長度不能超過4000mm;

  (2)截得600mm鋼管的數(shù)量不能超過500mm鋼管數(shù)量的3倍;

  (3)解得兩鐘鋼管的數(shù)量都不能為負(fù)。

  由以上不等關(guān)系,可得不等式組:

  [練習(xí)]第82頁,第1、2題。

  [知識(shí)拓展]

  設(shè)問:等式性質(zhì)中:等式兩邊加(減)同一個(gè)數(shù)(或式子),結(jié)果仍相等。不等式是否也有類似的性質(zhì)呢?

  從實(shí)數(shù)的基本性質(zhì)出發(fā),可以證明下列常用的不等式的基本性質(zhì):

  (1)

  (2)

  (3)

  (4)

  證明:

  例1講解(第82頁)

  [練習(xí)]第82頁,第3題。

  [思考]:利用以上基本性質(zhì),證明不等式的下列性質(zhì):

  [小結(jié)]:1.現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系;

  2.利用不等式的有關(guān)基本性質(zhì)研究不等關(guān)系;

  [作業(yè)]:習(xí)題3.1(第83頁):(A組)4、5;(B組)2.

不等關(guān)系 篇5

  【教學(xué)目標(biāo)】

  1.通過具體情境讓學(xué)生感受和體驗(yàn)現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,鼓勵(lì)學(xué)生用數(shù)學(xué)觀點(diǎn)進(jìn)行觀察、歸納、抽象,使學(xué)生感受數(shù)學(xué)、走進(jìn)數(shù)學(xué)、改變學(xué)生的數(shù)學(xué)學(xué)習(xí)態(tài)度。

  2.建立不等觀念,并能用不等式或不等式組表示不等關(guān)系。

  3.了解不等式或不等式組的實(shí)際背景。

  4.能用不等式或不等式組解決簡單的實(shí)際問題。

  【重點(diǎn)難點(diǎn)】

  重點(diǎn):

  1.通過具體的問題情景,讓學(xué)生體會(huì)不等量關(guān)系存在的普遍性及研究的必要性。

  2.用不等式或不等式組表示實(shí)際問題中的不等關(guān)系,并用不等式或不等式組研究含有簡單的不等關(guān)系的問題。

  3.理解不等式或不等式組對于刻畫不等關(guān)系的意義和價(jià)值。

  難點(diǎn):

  1.用不等式或不等式組準(zhǔn)確地表示不等關(guān)系。

  2.用不等式或不等式組解決簡單的含有不等關(guān)系的實(shí)際問題。

  【方法手段】

  1.采用探究法,按照閱讀、思考、交流、分析,抽象歸納出數(shù)學(xué)模型,從具體到抽象再從抽象到具體的方法進(jìn)行啟發(fā)式教學(xué)。

  2.教師提供問題、素材,并及時(shí)點(diǎn)撥,發(fā)揮老師的主導(dǎo)作用和學(xué)生的主體作用。

  3.設(shè)計(jì)教典型的現(xiàn)實(shí)問題,激發(fā)學(xué)生的學(xué)習(xí)興趣和積極性。

  【教學(xué)過程】

  教學(xué)環(huán)節(jié)

  教師活動(dòng)

  學(xué)生活動(dòng)

  設(shè)計(jì)意圖

  導(dǎo)入新課

  日常生活中,同學(xué)們發(fā)現(xiàn)了哪些數(shù)量關(guān)系。你能舉出一些例子嗎?

  實(shí)例1.某天的天氣預(yù)報(bào)報(bào)道,最高氣溫35℃,最低氣溫29℃。

  實(shí)例2.若一個(gè)數(shù)是非負(fù)數(shù),則這個(gè)數(shù)大于或等于零。

  實(shí)例3.兩點(diǎn)之間線段最短。

  實(shí)例4.三角形兩邊之和大于第三邊,兩邊之差小于第三邊。

  引導(dǎo)學(xué)生想生活中的例子和學(xué)過的數(shù)學(xué)中的例子。在老師的引導(dǎo)下,學(xué)生肯定會(huì)迫不及待的能說出很多個(gè)例子來。即活躍了課堂氣氛,又激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  推進(jìn)新課

  同學(xué)們所舉的這些例子聯(lián)系了現(xiàn)實(shí)生活,又考慮到數(shù)學(xué)上常見的數(shù)量關(guān)系,非常好。而且大家已經(jīng)考慮到本節(jié)課的標(biāo)題《不等關(guān)系與不等式》,所舉的實(shí)例都是反映不等量的關(guān)系。

  (下面利用電腦投影展示兩個(gè)實(shí)例)

  實(shí)例5:限時(shí)40km/h的路標(biāo),指示司機(jī)在前方路段行使時(shí),應(yīng)使汽車的速度v不超過40km/h。

  實(shí)例6:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.

  同學(xué)們認(rèn)真觀看顯示屏幕上老師所舉的例子。

  讓學(xué)生們邊看邊思考:生活中有許多的事情的描述可以采用不等的數(shù)量關(guān)系來描述

  過程引導(dǎo)

  能夠發(fā)現(xiàn)身邊的數(shù)學(xué)當(dāng)然很好,這說明同學(xué)們已經(jīng)走進(jìn)了數(shù)學(xué)這門學(xué)科,但是我們還要能用數(shù)學(xué)的眼光、數(shù)學(xué)的觀點(diǎn)、進(jìn)行觀察、歸納、抽象,完成這些量與量的比較過程,那么我們用什么知識(shí)來表示這些不等關(guān)系呢?

  什么是不等式呢?

  用大屏幕展示一組不等式-71+4;2x≤6;a+2≥0;3≠4.

  能用不等式及不等式組把這些不等關(guān)系表示出來,也就是建立不等式數(shù)學(xué)模型的過程通過對不等式數(shù)學(xué)模型的研究,反過來作用于現(xiàn)實(shí)生活,這才是學(xué)習(xí)數(shù)學(xué)的最終目的。

  思考并回答老師的問題:可以用不等式或不等式組來表示不等關(guān)系。

  經(jīng)過老師的啟發(fā)和點(diǎn)撥,學(xué)生可以自己總結(jié)出:用不等號(hào)將兩個(gè)解析試連接起來所成的式子叫不等式。

  目的是讓學(xué)生回憶不等式的一些基本形式,并說明不等號(hào)≤,≥的含義,是或的關(guān)系。回憶了不等式的概念,不等式組學(xué)生自然而然就清楚了。

  此時(shí)學(xué)生已經(jīng)迫不及待地想說出自己的觀點(diǎn)了。

  合作探究

  (一)。下面我們把上述實(shí)例中的不等量的關(guān)系用不等式或不等式組一一的表示出來,那應(yīng)該怎么表示呢?

  這兩位同學(xué)的觀點(diǎn)是否正確?

  老師要表揚(yáng)學(xué)生:“很好!這樣思考問題很嚴(yán)密。”應(yīng)該用不等式組來表示此實(shí)際問題中的不等量關(guān)系,也可以用“且”的形式來表達(dá)。

  (二)。問題一:設(shè)點(diǎn)A與平面的距離為d,B為平面上的任意一點(diǎn)。

  請同學(xué)們用不等式或不等式組來表示出此問題中的不等量的關(guān)系。

  老師提示:借助于圖形,這個(gè)問題是不是可以解決?

  (下面讓學(xué)生板演,結(jié)合三角形草圖來表達(dá))

  問題(二):某種雜志原以每本2。5元的價(jià)格銷售,可以售出8萬本,據(jù)市場調(diào)查,若單價(jià)每提高0。1元,銷售量就可能相應(yīng)減少20xx本。若把提價(jià)后雜志的定價(jià)設(shè)為x元,怎樣用不等式表示銷售的總收入仍不低于20萬元呢?

  是不是還有其他的思路?

  為什么可以這樣設(shè)?

  很好,請繼續(xù)講。

  這位學(xué)生回答的很好,表述得很準(zhǔn)確。請同學(xué)們對兩種解法作比較。

  問題(三):某鋼鐵廠要把長度為4000mm的鋼管截成500mm和600mm兩種,按照生產(chǎn)的要求,600mm鋼管的數(shù)量不超過500mm鋼管的3倍。怎樣寫出滿足上述所有不等式關(guān)系的不等式?

  假設(shè)截得500mm的鋼管x根,截得600mm的鋼管y根。根據(jù)題意,應(yīng)當(dāng)有什么樣的不等量關(guān)系呢?

  右邊的三個(gè)不等關(guān)系是“或”還是“且”的關(guān)系呢?

  這位學(xué)生回答得很好,思維很嚴(yán)密,那么該用怎樣的不等式組來表示此問題中的不等關(guān)系呢?

  通過上述三個(gè)問題的探究,同學(xué)們對如何用不等式或不等式組把實(shí)際問題中隱藏的不等量關(guān)系表示出來,這一點(diǎn)掌握得很好。請同學(xué)們完成書本練習(xí)第74頁1,2。

  課堂小結(jié):

  1.學(xué)習(xí)數(shù)學(xué)可以幫助我們解決實(shí)際生活中的問題。

  2.數(shù)學(xué)和我們的生活聯(lián)系非常密切。

  3.本節(jié)課鞏固了二元一次不等式及二元一次不等式組,并且能用它來解決現(xiàn)實(shí)生活中存在的大量不等量關(guān)系的實(shí)際問題。還要注意思維要嚴(yán)密,規(guī)范,并且要注意數(shù)形結(jié)合等思想方法的綜合應(yīng)用。

  布置作業(yè):

  第75頁習(xí)題3.1 A組4,5。

  29℃≤t≤35℃

  x≥0

  |AC|+|BC|>|AB|

  |AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.

  |AB|-|BC|b,或者a=b”,等價(jià)于“a不小于b,即若a>b或a=b之中有一個(gè)正確,則ab正確.3.實(shí)數(shù)比較大小的依據(jù)與方法.

  (1)如果ab是正數(shù),那么ab;如果ab等于零,那么ab;如果ab是負(fù)數(shù),那么ab.反之也成立,就是(ab>0a>b;ab=0a=b;ab

  (二)基礎(chǔ)練習(xí)

  1.用不等式表示下面的不等關(guān)系:

  (1)a與b的和是非負(fù)數(shù);

  (2)某公路立交橋?qū)νㄟ^車輛的高度h“限高4m”;解:

  (1)ab0;

  (2)h4.2.有一個(gè)兩位數(shù)大于50而小于60,其個(gè)位數(shù)字比十位數(shù)字大2.試用

  不等式表示上述關(guān)系(用a和b分別表示這個(gè)兩位數(shù)的十位數(shù)字和個(gè)位數(shù)字).解:由題意知5010ab60,5010ab60,5011a260

  ba2,ba2,43a5.11114811a5843.比較(a+3)(a-5)與(a+2)(a-4)的大小.解:(a+3)(a-5)-(a+2)(a-4)=(a22a15)-a22a6=-7

  (三)提升訓(xùn)練

  1.比較x23與3x的大小,其中xR.

  222233333解:x33xx3x3x3x3x

  24422220,x233x.方法總結(jié):兩個(gè)實(shí)數(shù)比較大小,通常用作差法來進(jìn)行,其一般步驟是:

  第一步:作差;第二步:變形,常采用配方、因式分解等恒等變形手段,將差化積;第三步:定號(hào).最后得出結(jié)論.

  2.小明帶了20元錢去超市買筆記本和鋼筆.已知筆記本每本2元,鋼筆每枝5元.設(shè)他所能買的筆記本和鋼筆的數(shù)量分別為x,y,則x,2x5y20,y應(yīng)滿足關(guān)系式xN,

  yN.3.一個(gè)盒中紅、白、黑三種球分別有x個(gè)、y個(gè)、z個(gè),黑球個(gè)數(shù)至少是白球個(gè)數(shù)的一半,至多是紅球的,白球與黑球的個(gè)數(shù)之和至少

  為55,使用不等式將題中的不等關(guān)系表示出來(x,y,zN*).yxz,解:32

  yz55.

  (四)課后鞏固

  p74練習(xí)題:1,2.p75習(xí)題3.1 A組:1,2. 4

不等關(guān)系 篇6

  《利用不等關(guān)系分析比賽》教學(xué)設(shè)計(jì) 北京八中 黃緯

  教學(xué)目標(biāo): 1.以體育比賽問題為載體,探究實(shí)際問題中的不等關(guān)系,進(jìn)一步體會(huì)利用不等關(guān)系解決實(shí)際問題的基本過程;

  2.在利用不等關(guān)系分析比賽結(jié)果的過程中,提高分析問題、解決問題的能力,發(fā)展邏輯思維能力和有條理表達(dá)思維過程的能力;

  3.感受數(shù)學(xué)的應(yīng)用價(jià)值,培養(yǎng)用數(shù)學(xué)眼光看世界的意識(shí),引導(dǎo)學(xué)生關(guān)注生活、關(guān)注社會(huì).

  教學(xué)重點(diǎn):利用不等關(guān)系分析事物間的邏輯關(guān)系.

  教學(xué)難點(diǎn):對實(shí)際問題背景的理解,如何將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題.

  教學(xué)過程:

  一.引入

  同學(xué)們,XX年正向我們走來,那時(shí)我們將能觀看到各種激烈的體育比賽。看比賽,我們總是對結(jié)果充滿了期待,那你能利用所學(xué)的知識(shí)預(yù)測比賽結(jié)果嗎?今天我們就學(xué)習(xí)如何利用不等關(guān)系分析比賽.

  二.問題研討:

  問題1: 某射擊運(yùn)動(dòng)員在一次比賽中前6次射擊共中52環(huán),如果他要打破89環(huán)(10次射擊)的記錄,第7次射擊不能少于多少環(huán)?

  (1) 對射擊比賽規(guī)則的介紹;

  (2) 問題的分析解決:

  ①借助表格,分析解決;

  注意:本文章有隱藏內(nèi)容

  查看本文章的全部內(nèi)容需要 1積分 和 普通會(huì)員權(quán)限

  如果您已經(jīng)達(dá)到要求, 請:點(diǎn)擊鏈接查看全部內(nèi)容

  點(diǎn)擊查看

不等關(guān)系(精選6篇) 相關(guān)內(nèi)容:
  • 《旋轉(zhuǎn)》教學(xué)設(shè)計(jì)(精選9篇)

    一、復(fù)習(xí)舊知。1、出示指針旋轉(zhuǎn)的過程,喚起學(xué)生對旋轉(zhuǎn)的記憶。師:(出示課件:鐘面模型)分針從12轉(zhuǎn)到3,怎么旋轉(zhuǎn)的?生:分針順時(shí)針旋轉(zhuǎn)了90度。...

  • 《信客》教學(xué)設(shè)計(jì)(通用22篇)

    【教學(xué)目標(biāo)】1、知識(shí)和能力:整體把握課文,掌握文章的中心。從精妙的語言中揣摩文章的寫作用意。2、過程和方法:把握人物的形象,體會(huì)前后對比的寫法。3、情感態(tài)度和價(jià)值觀:樹立誠信為本的做人理念。...

  • 《確定起跑線》教案(精選7篇)

    設(shè)計(jì)理念:1、盡可能向?qū)W生提供現(xiàn)實(shí)的素材,讓學(xué)生感受和學(xué)習(xí)“現(xiàn)實(shí)中的數(shù)學(xué)”。2、創(chuàng)設(shè)開放的問題情境和寬松的學(xué)習(xí)氛圍,給學(xué)生充分的思考和交流的空間,引導(dǎo)學(xué)生開展自主性的數(shù)學(xué)活動(dòng)。...

  • 《旋轉(zhuǎn)》教案(通用8篇)

    教學(xué)內(nèi)容:蘇教版第六冊第24—26頁。 教學(xué)目標(biāo): 1、通過觀察生活圖片,初步感知平移和旋轉(zhuǎn)現(xiàn)象,并能在方格紙上按要求將簡單圖形平移。 2、在探索物體或圖形的運(yùn)動(dòng)過程中發(fā)展空間觀念。...

  • 《信客》教案(通用19篇)

    教學(xué)目標(biāo): 1、感受信客的品格和精神,懂得關(guān)愛和敬重社會(huì)這類平凡而偉大的人。; 2、感知課文內(nèi)容,學(xué)會(huì)從人物語言、行動(dòng)和心理分析概括人物性格的能力; 3、在品味和探究中領(lǐng)悟秋雨散文的質(zhì)樸而典雅,提高語言鑒賞水平。...

  • 《丑小鴨》教學(xué)設(shè)計(jì)(精選22篇)

    【分析教材】《丑小鴨》這篇課文是根據(jù)著名童話作家安徒生的《丑小鴨》改編的,故事中的丑小鴨是一個(gè)面對艱難曲折的歷程仍然一心一意追求美好理想的形象。故事寫得十分感人,貼進(jìn)兒童生活,符合低年級兒童的年齡和心理特征。...

  • 《對稱圖形》教學(xué)設(shè)計(jì)(精選5篇)

    對稱圖形教學(xué)設(shè)計(jì)教學(xué)目標(biāo):1、聯(lián)系生活中的具體物體,通過觀察和動(dòng)手操作,使學(xué)生初步體會(huì)生活中的對稱現(xiàn)象,認(rèn)識(shí)對稱圖形。 2、使學(xué)生能根據(jù)對稱圖形初步認(rèn)識(shí),在圖形中識(shí)別對稱圖形,用一些方法做出對稱圖形。...

  • 《連 減》教學(xué)設(shè)計(jì)(精選3篇)

    教學(xué)內(nèi)容:小學(xué)二年級數(shù)學(xué)上冊26—27頁例1、例2教學(xué)目標(biāo):1、使學(xué)生掌握用豎式計(jì)算連加、連減的方法和豎式的簡便寫法。2、能正確地進(jìn)行計(jì)算。3、培養(yǎng)學(xué)生認(rèn)真的學(xué)習(xí)態(tài)度,計(jì)算細(xì)心,書寫整潔的學(xué)習(xí)習(xí)慣。...

  • 數(shù)學(xué)教案-平行四邊形的判定(精選3篇)

    教學(xué)建議1.重點(diǎn) 平行四邊形的判定定理重點(diǎn)分析 平行四邊形的判定方法涉及平行四邊形元素的各方面,同時(shí)它又與平行四邊形的性質(zhì)聯(lián)系,判定一個(gè)四邊形是否為平行四邊形是利用平行四邊形性質(zhì)解決其他問題的基礎(chǔ),所以平行四邊形的判定定理是...

  • 八年級數(shù)學(xué)教案
主站蜘蛛池模板: 洛扎县| 西乡县| 河池市| 阳江市| 怀仁县| 彩票| 临湘市| 乌兰县| 松溪县| 称多县| 阳高县| 余姚市| 红安县| 墨竹工卡县| 涪陵区| 石嘴山市| 鄂托克前旗| 衢州市| 东安县| 黄平县| 波密县| 航空| 东丽区| 曲阳县| 门源| 永年县| 革吉县| 嵩明县| 大足县| 南澳县| 天长市| 江源县| 西乌珠穆沁旗| 福清市| 铜陵市| 杭州市| 呼伦贝尔市| 静海县| 江北区| 固镇县| 青海省|