分組分解法
教學目標
1.使學生掌握分組后能運用提公因式和公式法把多項式分解因式;
2.通過因式分解的綜合題的教學,提高學生綜合運用知識的能力.
教學重點和難點
重點:在中,提公因式法和分式法的綜合運用.
難點:靈活運用已學過的因式分解的各種方法.
教學過程設計
一、復習
把下列各式分解因式,并說明運用了中的什么方法.
(1)a2-ab+3b-3a; (2)x2-6xy+9y2-1;
(3)am-an-m2+n2; (4)2ab-a2-b2+c2.
解 (1) a2-ab+3b-3a
=(a2-ab)-(3a-3b)
=a(a-b)-3(a-b)
=(a-b)(a-3);
(2)x2-6xy+9y2-1
=(x-3y) 2-1
=(x-3y+1)(x-3y-1);
(3)am-an-m2+n2
=(am-an)-(m2-n2)
=a(m-n)-(m+n)(m-n)
=(m-n)(a-m-n);
(4)2ab-a2-b2+c2
=c2-(a2+b2-2ab)
=c2-(a-b) 2
=(c+a-b)(c-a+b).
第(1)題分組后,兩組各提取公因式,兩組之間繼續提取公因式.
第(2)題把前三項分為一組,利用完全平方公式分解因式,再與第四項運用平方差公式
繼續分解因式.
第(3)題把前兩項分為一組,提取公因式,后兩項分為一組,用平方差公式分解因式,然后兩組之間再提取公因式.
第(4)題把第一、二、三項分為一組,提出一個“-”號,利用完全平方公式分解因式
,第四項與這一組再運用平方差公式分解因式.
把含有四項的多項式進行因式分解時,先根據所給的多項式的特點恰當分解,再運
用提公因式或分式法進行因式分解.在添括號時,要注意符號的變化.
這節課我們就來討論應用所學過的各種因式分解的方法把一個多項式分解因式.
二、新課
例1 把 分解因式.
問:根據這個多項式的特點怎樣分組才能達到因式分解的目的?
答:這個多項式共有四項,可以把其中的兩項分為一組,所以有兩種分解因式的方法.
解 方法一
方法二
;
例2 把分解因式.
問:觀察這個多項式有什么特點?是否可以直接運用分組法進行因式分解?
答:這個多項式的各項都有公式因ab,可以先提取這個公因式,再設法運用分組法繼續分解因式.
解:
=
=
=
=
例3 把45m2-20ax2+20axy-5ay2分解因式.
分析:這個多項式的各項有公因式5a,先提取公因式,再觀察余下的因式,可以按:一、三”分組原則進行分組,然后運用公式法分解因式.
解 45m2-20ax2+20axy-5ay2=5a(9m2-4x2+4xy-y2)
=5a[9m2-(4x2-4xy+y2)]
=5a[(3m2)-(2x-y) 2]
=5a(3m+2x-y)(3m-2x+y).
例4 把2(a2-3mn)+a(4m-3n)分解因式.
分析:如果去掉多項式的括號,再恰當分組,就可用分解因式了.
解 2(a2-3mn)+a(4m-3n)=2a2-6mn+4am-3an
=(2a2-3an)+(4am-6mn)
=a(2a-3n)+2m(2a-3n)
=(2a-3n)(a+2m).
指出:如果給出的多項式中有因式乘積,這時可先進行乘法運算,把變形后的多項式按照分組原則,用分解因式.
第 1 2 頁