三角形的角平分線
定理
李逵
教學目標:1、理解三角形的內外角平分線定理;
2、會證明三角形的內外角平分線定理;
3、通過對定理的證明,學習幾何證明方法和作輔助線的方法;
4、培養邏輯思維能力。
教學重點:1、幾何證明中的證法分析;
2、添加輔助線的方法。
教學難點:如何添加有用的輔助線。
教學關鍵:抓住相似三角形的判定和性質進行教學。
教學方法:“四段式”教學法,即讀、議、講、練。
一、閱讀課本,注意問題
1、復習舊知識,回答下列問題
①在等腰三角形中,怎樣從等邊得出等角?又怎樣從等角得出等邊?請畫圖說明。
②輔助線的作法中,除了過兩個點連接一條線段外,最常見的就是過某個已知點作某條已知直線的平行線。平行線有哪些性質?
③怎樣判斷兩個三角形是相似的?相似三角形最基本的性質是什么?
④幾何證明中怎樣構造有用的相似三角形?
2、閱讀課本,弄清楚教材的內容,并注意教材上是怎樣講的。
提示:課本上在這一節講了三角形的內外角平分線定理,每個定理各講了一種證明方法。為了敘述定理的需要,課本上還講了線段的內分點和外分點兩個概念。最后用一個例題來說明怎樣運用三角形的內外角平分線定理。閱讀時要注意課本上有關問題的敘述、分析以及作輔助線的方法。通過適當的聯想和猜測,找出一些課本上尚未出現的新的證明方法。
a
b
c
d
3、注意下列問題:⑴如圖,等腰 中,頂角 的平分線 交底邊 于 ,那么,圖中出現的相等線段是 , ,即 , 。通過比較得到 。
a
b
c
d
⑵如果上面問題中的 換成任意三角形,即右圖的 , 平分 ,交 于 ,那么, 是不是還成立?請同學們用刻度尺量一量線段 、 、 、 的長度,計算 ?, ?,然后再比較(小的誤差忽略不計)。⑶三角形的內角平分線定理說的是什么意思?課本上是怎樣寫已知、求證的?
⑷課本上是怎樣進行分析、證明的?都用了哪些學過的知識?證明的根據是什么?
⑸課本上證明的過程中是怎樣作輔助線的?這樣作輔助線的目的是什么?
⑹過 、 、 三點能不能作出有用的輔助線?如果能,輔助線應該怎樣作?各能作出幾條?
⑺就作出的輔助線,怎樣尋找證明的思路和方法?分析的過程中用到了哪些知識?
⑻你能不能類似地敘述三角形的外角平分線定理?
⑼回答練習中的第一題。
⑽總結證明方法和作輔助線的方法。
⑾注意內分點和外分點兩個概念及其應用。
4、閱讀指導叢書《平面幾何》第二冊 。
⑴注意輔助線中平行線的作法,通過對 圖 、 、 的觀察分析,找出解決問題的證明方法。
⑵叢書 利用正弦定理中的面積公式來證明三角形的內角平分線定理,既把有關的知識聯系起來、拓展了解題思路,又為我們提供了一種比較簡單的解決問題的方法,值得我們借鑒。要注意三角形面積的幾種不同的計算方法。
二、互相討論,解答疑點
1、上面提出的問題,希望大家獨立思考、獨立完成。根據已有的思路和線索,參照課本上的方法進行分析。
2、思考中實在是有困難的同學,可以和周圍的同學互相討論,發表看法;也可以請老師幫助、提示或指點。