數(shù)學高三復習優(yōu)秀教案(精選3篇)
數(shù)學高三復習優(yōu)秀教案 篇1
【學習目標】
1.了解復合函數(shù)的概念,理解復合函數(shù)的求導法則,能求簡單的復合函數(shù)(僅限于形如f(ax+b))的導數(shù).
2.會用復合函數(shù)的導數(shù)研究函數(shù)圖像或曲線的特征.
3.會用復合函數(shù)的導數(shù)研究函數(shù)的單調性、極值、最值.
【知識復習與自學質疑】
1.復合函數(shù)的求導法則是什么?
2.(1)若,則________.(2)若,則_____.(3)若,則___________.(4)若,則___________.
3.函數(shù)在區(qū)間_____________________________上是增函數(shù),在區(qū)間__________________________上是減函數(shù).
4.函數(shù)的單調性是_________________________________________.
5.函數(shù)的極大值是___________.
6.函數(shù)的值,最小值分別是______,_________.
【例題精講】
1.求下列函數(shù)的導數(shù)(1);(2).
2.已知曲線在點處的切線與曲線在點處的切線相同,求的值.
【矯正反饋】
1.與曲線在點處的切線垂直的一條直線是___________________.
2.函數(shù)的極大值點是_______,極小值點是__________.
(不好解)3.設曲線在點處的切線斜率為,若,則函數(shù)的周期是____________.
4.已知曲線在點處的切線與曲線在點處的切線互相垂直,為原點,且,則的面積為______________.
5.曲線上的點到直線的最短距離是___________.
【遷移應用】
1.設,,若存在,使得,求的取值范圍.
2.已知,,若對任意都有,試求的取值范圍.
【概率統(tǒng)計復習】
一、知識梳理
1.三種抽樣方法的聯(lián)系與區(qū)別:
類別共同點不同點相互聯(lián)系適用范圍
簡單隨機抽樣都是等概率抽樣從總體中逐個抽取總體中個體比較少
系統(tǒng)抽樣將總體均勻分成若干部分;按事先確定的規(guī)則在各部分抽取在起始部分采用簡單隨機抽樣總體中個體比較多
分層抽樣將總體分成若干層,按個體個數(shù)的比例抽取在各層抽樣時采用簡單隨機抽樣或系統(tǒng)抽樣總體中個體有明顯差異
(1)從含有N個個體的總體中抽取n個個體的樣本,每個個體被抽到的概率為
(2)系統(tǒng)抽樣的步驟:①將總體中的個體隨機編號;②將編號分段;③在第1段中用簡單隨機抽樣確定起始的個體編號;④按照事先研究的規(guī)則抽取樣本.
(3)分層抽樣的步驟:①分層;②按比例確定每層抽取個體的個數(shù);③各層抽樣;④匯合成樣本.
(4)要懂得從圖表中提取有用信息
如:在頻率分布直方圖中①小矩形的面積=組距=頻率②眾數(shù)是矩形的中點的橫坐標③中位數(shù)的左邊與右邊的直方圖的面積相等,可以由此估計中位數(shù)的值
2.方差和標準差都是刻畫數(shù)據(jù)波動大小的數(shù)字特征,一般地,設一組樣本數(shù)據(jù),,…,,其平均數(shù)為則方差,標準差
3.古典概型的概率公式:如果一次試驗中可能出現(xiàn)的結果有個,而且所有結果都是等可能的,如果事件包含個結果,那么事件的概率P=
特別提醒:古典概型的兩個共同特點:
○1,即試中有可能出現(xiàn)的基本事件只有有限個,即樣本空間Ω中的元素個數(shù)是有限的;
○2,即每個基本事件出現(xiàn)的可能性相等。
4.幾何概型的概率公式:P(A)=
特別提醒:幾何概型的特點:試驗的結果是無限不可數(shù)的;○2每個結果出現(xiàn)的可能性相等。
二、夯實基礎
(1)某單位有職工160名,其中業(yè)務人員120名,管理人員16名,后勤人員24名.為了解職工的某種情況,要從中抽取一個容量為20的樣本.若用分層抽樣的方法,抽取的業(yè)務人員、管理人員、后勤人員的人數(shù)應分別為____________.
(2)某賽季,甲、乙兩名籃球運動員都參加了
11場比賽,他們所有比賽得分的情況用如圖2所示的莖葉圖表示,
則甲、乙兩名運動員得分的中位數(shù)分別為
A.19、13B.13、19C.20、18D.18、20
(3)統(tǒng)計某校1000名學生的數(shù)學會考成績,
得到樣本頻率分布直方圖如右圖示,規(guī)定不低于60分為
及格,不低于80分為優(yōu)秀,則及格人數(shù)是;
優(yōu)秀率為。
(4)在一次歌手大獎賽上,七位評委為歌手打出的分數(shù)如下:
9.48.49.49.99.69.49.7
去掉一個分和一個最低分后,所剩數(shù)據(jù)的平均值
和方差分別為
A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.016
(5)將一顆骰子先后拋擲2次,觀察向上的點數(shù),則以第一次向上點數(shù)為橫坐標x,第二次向上的點數(shù)為縱坐標y的點(x,y)在圓x2+y2=27的內部的概率________.
(6)在長為12cm的線段AB上任取一點M,并且以線段AM為邊的正方形,則這正方形的面積介于36cm2與81cm2之間的概率為
數(shù)學高三復習優(yōu)秀教案 篇2
教學目標
(1)正確理解加法原理與乘法原理的意義,分清它們的條件和結論;
(2)能結合樹形圖來幫助理解加法原理與乘法原理;
(3)正確區(qū)分加法原理與乘法原理,哪一個原理與分類有關,哪一個原理與分步有關;
(4)能應用加法原理與乘法原理解決一些簡單的應用問題,提高學生理解和運用兩個原理的能力;
(5)通過對加法原理與乘法原理的學習,培養(yǎng)學生周密思考、細心分析的良好習慣。
教學建議
一、知識結構
二、重點難點分析
本節(jié)的重點是加法原理與乘法原理,難點是準確區(qū)分加法原理與乘法原理。
加法原理、乘法原理本身是容易理解的,甚至是不言自明的。這兩個原理是學習排列組合內容的基礎,貫穿整個內容之中,一方面它是推導排列數(shù)與組合數(shù)的基礎;另一方面它的結論與其思想在方法本身又在解題時有許多直接應用。
兩個原理回答的,都是完成一件事的所有不同方法種數(shù)是多少的問題,其區(qū)別在于:運用加法原理的前提條件是,做一件事有n類方案,選擇任何一類方案中的任何一種方法都可以完成此事,就是說,完成這件事的各種方法是相互獨立的;運用乘法原理的前提條件是,做一件事有n個驟,只要在每個步驟中任取一種方法,并依次完成每一步驟就能完成此事,就是說,完成這件事的各個步驟是相互依存的。簡單的說,如果完成一件事情的所有方法是屬于分類的問題,每次得到的是最后結果,要用加法原理;如果完成一件事情的方法是屬于分步的問題,每次得到的該步結果,就要用乘法原理。
三、教法建議
關于兩個計數(shù)原理的教學要分三個層次:
第一是對兩個計數(shù)原理的認識與理解.這里要求學生理解兩個計數(shù)原理的意義,并弄清兩個計數(shù)原理的區(qū)別.知道什么情況下使用加法計數(shù)原理,什么情況下使用乘法計數(shù)原理.(建議利用一課時).
第二是對兩個計數(shù)原理的使用.可以讓學生做一下習題(建議利用兩課時):
、儆0,1,2,……,9可以組成多少個8位號碼;
②用0,1,2,……,9可以組成多少個8位整數(shù);
、塾0,1,2,……,9可以組成多少個無重復數(shù)字的4位整數(shù);
、苡0,1,2,……,9可以組成多少個有重復數(shù)字的4位整數(shù);
⑤用0,1,2,……,9可以組成多少個無重復數(shù)字的4位奇數(shù);
⑥用0,1,2,……,9可以組成多少個有兩個重復數(shù)字的4位整數(shù)等等.
第三是使學生掌握兩個計數(shù)原理的綜合應用,這個過程應該貫徹整個教學中,每個排列數(shù)、組合數(shù)公式及性質的推導都要用兩個計數(shù)原理,每一道排列、組合問題都可以直接利用兩個原理求解,另外直接計算法、間接計算法都是兩個原理的一種體現(xiàn).教師要引導學生認真地分析題意,恰當?shù)姆诸悺⒎植剑煤谩⒂没顑蓚基本計數(shù)原理.
數(shù)學高三復習優(yōu)秀教案 篇3
一、教學目標
1、知識與技能
(1)理解對數(shù)的概念,了解對數(shù)與指數(shù)的關系;
(2)能夠進行指數(shù)式與對數(shù)式的互化;
(3)理解對數(shù)的性質,掌握以上知識并培養(yǎng)類比、分析、歸納能力;
2、過程與方法
3、情感態(tài)度與價值觀
(1)通過本節(jié)的學習體驗數(shù)學的嚴謹性,培養(yǎng)細心觀察、認真分析
分析、嚴謹認真的良好思維習慣和不斷探求新知識的精神;
(2)感知從具體到抽象、從特殊到一般、從感性到理性認知過程;
(3)體驗數(shù)學的科學功能、符號功能和工具功能,培養(yǎng)直覺觀察、
探索發(fā)現(xiàn)、科學論證的良好的數(shù)學思維品質、
二、教學重點、難點
教學重點
(1)對數(shù)的'定義;
(2)指數(shù)式與對數(shù)式的互化;
教學難點
(1)對數(shù)概念的理解;
(2)對數(shù)性質的理解;
三、教學過程:
四、歸納總結:
1、對數(shù)的概念
一般地,如果函數(shù)ax=n(a0且a≠1)那么數(shù)x叫做以a為底n的對數(shù),記作x=logan,其中a叫做對數(shù)的底數(shù),n叫做真數(shù)。
2、對數(shù)與指數(shù)的互化
ab=n?logan=b
3、對數(shù)的基本性質
負數(shù)和零沒有對數(shù);loga1=0;logaa=1對數(shù)恒等式:alogan=n;logaa=nn
五、課后作業(yè)
課后練習1、2、3、4