初中數學因式分解教案(精選5篇)
初中數學因式分解教案 篇1
教學目標
1、知識與技能
了解因式分解的意義,以及它與整式乘法的關系。
2、過程與方法
經歷從分解因數到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用。
3、情感、態度與價值觀
在探索因式分解的方法的活動中,培養學生有條理的思考、表達與交流的能力,培養積極的進取意識,體會數學知識的內在含義與價值。
重、難點與關鍵
1、重點:了解因式分解的意義,感受其作用。
2、難點:整式乘法與因式分解之間的關系。
3、關鍵:通過分解因數引入到分解因式,并進行類比,加深理解。
教學方法
采用“激趣導學”的教學方法。
教學過程
一、創設情境,激趣導入
【問題牽引】
請同學們探究下面的2個問題:
問題1:720能被哪些數整除?談談你的想法。
問題2:當a=102,b=98時,求a2—b2的值。
二、豐富聯想,展示思維
探索:你會做下面的填空嗎?
1、ma+mb+mc=;
2、x2—4=;
3、x2—2xy+y2=2。
【師生共識】把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做分解因式。
三、小組活動,共同探究
【問題牽引】
(1)下列各式從左到右的變形是否為因式分解:
①(x+1)(x—1)=x2—1;
②a2—1+b2=(a+1)(a—1)+b2;
③7x—7=7(x—1)。
(2)在下列括號里,填上適當的項,使等式成立。
①9x2(______)+y2=(3x+y)(_______);
②x2—4xy+(_______)=(x—_______)2。
四、隨堂練習,鞏固深化
課本練習。
【探研時空】計算:993—99能被100整除嗎?
五、課堂總結,發展潛能
由學生自己進行小結,教師提出如下綱目:
1、什么叫因式分解?
2、因式分解與整式運算有何區別?
六、布置作業,專題突破
選用補充作業。
板書設計
初中數學因式分解教案 篇2
一、教材分析
1、教材的地位與作用
“整式的乘法”是整式的加減的后續學習從冪的運算到各種整式的乘法,整章教材都突出了學生的自主探索過程,依據原有的知識基礎,或運用乘法的各種運算規律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學生自己對知識內容的探索、認識與體驗,完全有利于學生形成合理的知識結構,提高數學思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結果的形式,選擇正確的分解方法。
因式分解是一種常用的代數式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。
2、教學目標
(1)會推導乘法公式
(2)在應用乘法公式進行計算的基礎上,感受乘法公式的作用和價值。
(3)會用提公因式法、公式法進行因式分解。
(4)了解因式分解的一般步驟。
(5)在因式分解中,經歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
3、重點、難點和關鍵
重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。
難點:正確運用乘法公式;正確分解因式。
關鍵:正確理解乘法公式和因式分解的意義。
二、本單元教學的方法和策略:
1.注重知識形成的探索過程,讓學生在探索過程中領悟知識,在領悟過程中建構體系,從而更好地實現知識體系的更新和知識的正向遷移.
2.知識內容的呈現方式力求與學生已有的知識結構相聯系,同時兼顧學生的思維水平和心理特征.
3.讓學生掌握基本的數學事實與數學活動經驗,減輕不必要的記憶負擔.
4.注意從生活中選取素材,給學生提供一些交流、討論的空間,讓學生從中體會數學的應用價值,逐步養成談數學、想數學、做數學的良好習慣.
三、課時安排:
2.1平方差公式 1課時
2.2完全平方公式 2課時
2.3用提公因式法進行因式分解 1課時
2.4用公式法進行因式分解 2課時
初中數學因式分解教案 篇3
一、教學目標
(一)、知識與技能:
(1)使學生了解因式分解的意義,理解因式分解的概念。
(2)認識因式分解與整式乘法的相互關系——互逆關系,并能運用這種關系尋求因式分解的方法。
(二)、過程與方法:
(1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數分解之間的關系,培養學生的觀察能力,進一步發展學生的類比思想。
(2)由整式乘法的逆運算過渡到因式分解,發展學生的逆向思維能力。
(3)通過對分解因式與整式的乘法的觀察與比較,培養學生的分析問題能力與綜合應用能力。
(三)、情感態度與價值觀:讓學生初步感受對立統一的辨證觀點以及實事求是的科學態度。
二、教學重點和難點
重點:因式分解的概念及提公因式法。
難點:正確找出多項式各項的公因式及分解因式與整式乘法的區別和聯系。
三、教學過程
教學環節:
活動1:復習引入
看誰算得快:用簡便方法計算:
(1)7/9 X13-7/9 X6+7/9 X2= ;
(2)-2.67X132+25X2.67+7X2.67= ;
(3)992–1= 。
設計意圖:
如果說學生對因式分解還相當陌生的話,相信學生對用簡便方法進行計算應該相當熟悉.引入這一步的目的旨在讓學生通過回顧用簡便方法計算——因數分解這一特殊算法,使學生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環節設計的計算992–1的值是為了降低下一環節的難度,為下一環節的理解搭一個臺階.
注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。
活動2:導入課題
P165的探究(略);
2. 看誰想得快:993–99能被哪些數整除?你是怎么得出來的?
設計意圖:
引導學生把這個式子分解成幾個數的積的形式,繼續強化學生對因數分解的理解,為學生類比因式分解提供必要的精神準備。
活動3:探究新知
看誰算得準:
計算下列式子:
(1)3x(x-1)= ;
(2)(a+b+c)= ;
(3)(+4)(-4)= ;
(4)(-3)2= ;
(5)a(a+1)(a-1)= ;
根據上面的算式填空:
(1)a+b+c= ;
(2)3x2-3x= ;
(3)2-16= ;
(4)a3-a= ;
(5)2-6+9= 。
在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結果,然后通過對這兩組式子的結果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發展學生的逆向思維能力。
活動4:歸納、得出新知
比較以下兩種運算的聯系與區別:
a(a+1)(a-1)= a3-a
a3-a= a(a+1)(a-1)
在第三環節的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
初中數學因式分解教案 篇4
一、背景介紹
因式分解是代數式中的重要內容,它與前一章整式和后一章分式聯系極為密切。因式分解的教學是在整式四則運算的基礎上進行的,因式分解方法的理論依據就是多項式乘法的逆變形。它不僅在多項式的除法、簡便運算中有直接的應用,也為以后學習分式的約分與通分、解方程(組)及三角函數式的恒等變形提供了必要的基礎。因此,學好因式分解對于代數知識的后續學習,具有相當重要的意義。
二、教學設計
【教學內容分析】
因式分解的概念是把一個多項式化成幾個整式的積的形式,它是因式分解方法的理論基礎,也是本章中一個重要概念。教材在引入中是結合剪紙拼圖來闡述這一概念的,也可以與小學數學里因數分解的概念類比予以說明。在教學時對因式分解這一概念不宜要求學生一次徹底了解,應該在講授因式分解的三種基本方法時,結合具體例題的分解過程和分解結果,說明這一概念的意義,以達到逐步了解這一概念的教學目的。
【教學目標】
1、認知目標:
(1)理解因式分解的概念和意義
(2)認識因式分解與整式乘法的相互關系——相反變形,并會運用它們之間的相互關系尋求因式分解的方法。
2、能力目標:由學生自行探求解題途徑,培養學生觀察、分析、判斷能力和創新能力,發展學生智能,深化學生逆向思維能力和綜合運用能力。
3、情感目標:培養學生接受矛盾的對立統一觀點,獨立思考,勇于探索的精神和實事求是的科學態度。
【教學重點、難點】
重點是因式分解的概念,難點是理解因式分解與整式乘法的相互關系,并運用它們之間的相互關系尋求因式分解的方法。
【教學準備】
實物投影儀、多媒體輔助教學。
【教學過程】
㈠、情境導入
看誰算得快:(搶答)
(1)若a=101,b=99,則a2-b2=___________;
(2)若a=99,b=-1,則a2-2ab+b2=____________;
(3)若x=-3,則20x2+60x=____________。
【初一年級學生活波好動,好表現,爭強好勝。情境導入借助搶答的方式進行,引進競爭機制,可以使學生在參與的過程中提高興趣,并增強競爭意識和探究欲望。】
㈡、探究新知
1、請每題答得最快的同學談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
【“與其拉馬喝水,不如讓它口渴”。探索最佳解題方法的過程,就是學生“口渴”的地方。由此引起學生的求知欲。】
2、觀察:a2-b2=(a+b)(a-b) ,
a2-2ab+b2 = (a-b)2 ,
20x2+60x=20x(x+3),找出它們的特點。(等式的左邊是一個什么式子,右邊又是什么形式?)
【利用教師的主導作用,把學生的無意識的觀察轉變為有意識的觀察,同時教師應鼓勵學生大膽描述自己的觀察結果,并及時予以肯定。】
3、類比小學學過的因數分解概念,得出因式分解概念。(學生概括,老師補充。)
【讓學生自己概括出所感知的知識內容,有利于學生在實踐中感悟知識的生成過程,培養學生的語言表達能力。】
板書課題:§6.1因式分解
因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。
㈢、前進一步
1、讓學生繼續觀察:(a+b)(a-b)= a2-b2 ,
(a-b)2= a2-2ab+b2,
20x(x+3)= 20x2+60x,它們是什么運算?與因式分解有何關系?它們有何聯系與區別?
(要注意讓學生區分因式分解與整式乘法的區別,防止學生出現在進行因式分解當中,半路又做乘法的錯誤。)
【注重數學知識間的聯系,給學生提供探索與交流的空間,讓學生經歷數學知識的生成過程,由學生發現整式乘法與因式分解的相互關系,培養學生觀察、分析問題的能力和逆向思維能力及創新能力。】
2、因式分解與整式乘法的關系:
因式分解
結合:a2-b2=========(a+b)(a-b)
整式乘法
說明:從左到右是因式分解其特點是:由和差形式(多項式)轉化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉化成和差形式(多項式)。
結論:因式分解與整式乘法的相互關系——相反變形。(多媒體展示學生得出的成果)
㈣、鞏固新知
1、 下列代數式變形中,哪些是因式分解?哪些不是?為什么?
(1)x2-3x+1=x(x-3)+1 ;
(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn;
(4)4x2-4x+1=(2x-1)2;
(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x;
(7)k2+ +2=(k+ )2;
(8)18a3bc=3a2b?6ac。
【針對學生易犯的錯誤,制造認知沖突,讓學生充分暴露錯誤,然后通過分析、討論,達到理解的效果。】
2、你能寫出整式相乘(其中至少一個是多項式)的兩個例子,并由此得到相應的兩個多項式的因式分解嗎?把結果與你的同伴交流。
【學生出題熱情、積極性高,因初一學生好表現,因而能激發學生學習興趣,激活學生的思維。】
㈤、應用解釋
例 檢驗下列因式分解是否正確:
(1)x2y-xy2=xy(x-y);
(2)2x2-1=(2x+1)(2x-1);
(3)x2+3x+2=(x+1)(x+2).
分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。
練習 計算下列各題,并說明你的算法:(請學生板演)
(1)872+87X13
(2)1012-992
㈥、思維拓展
1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=
2.機動題:(填空)x2-8x+m=(x-4)( ),且m=
【進一步拓展學生在數學領域內的視野,增強學生對數學的興趣,使學生從小熱衷于數學的學習和探索。通過機動題,了解學生對概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創造能力,及時評價,及時矯正。】
㈦、課堂回顧
今天這節課,你學到了哪些知識?有哪些收獲與感受?說出來大家分享。
【課堂小結交給學生, 讓學生總結本節課中概念的發現過程,運用概念分析問題的過程,養成學生學習、總結、學習的良好習慣。唯有總結反思,才能控制思維操作,才能促進理解,提高認知水平,從而促進數學觀點的形成和發展,更好地進行知識建構,實現良性循環。】
㈧、布置作業
教科書第153的作業題。
【設計思想】
葉圣陶先生曾說過課堂教學的最高藝術是看學生,而不是看教師,看學生能否在課堂中煥發生命的活力。因此本教學是按“投疑——感知——概括——鞏固、應用和拓展”的敘述模式呈現教學內容的,這種呈現方式符合七年級學生的認知規律和學習規律,使學生從被動的學習到主動探索和發現的轉化中感受到學習與探索的樂趣。本堂課先采用以設疑探究的引課方式,激發學生的求知欲望,提高學生的學習興趣和學習積極性,再把因式分解概念及其與整式乘法的關系作為主線,訓練學生思維,使學生能順利地掌握重點,突破難點,提高能力。并在課堂教學中,引導學生體會知識的發生發展過程,堅持啟發式的教學方法,鼓勵學生充分地動腦、動口、動手,積極參與到教學中來,充分體現了學生的主動性原則。并改變了傳統的言傳身教的方式,恰當地運用了現代教育技術,展現了一個平等、互動的民主課堂。
初中數學因式分解教案 篇5
教學目標
1、知識與技能
會應用平方差公式進行因式分解,發展學生推理能力。
2、過程與方法
經歷探索利用平方差公式進行因式分解的過程,發展學生的逆向思維,感受數學知識的完整性。
3、情感、態度與價值觀
培養學生良好的互動交流的習慣,體會數學在實際問題中的應用價值。
重、難點與關鍵
1、重點:利用平方差公式分解因式。
2、難點:領會因式分解的解題步驟和分解因式的徹底性。
3、關鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉化成能夠應用公式的方面上來。
教學方法
采用“問題解決”的教學方法,讓學生在問題的牽引下,推進自己的思維。
教學過程
一、觀察探討,體驗新知
【問題牽引】
請同學們計算下列各式。
(1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。
【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演。
(1)(a+5)(a—5)=a2—52=a2—25;
(2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。
【教師活動】引導學生完成下面的兩道題目,并運用數學“互逆”的思想,尋找因式分解的規律。
1、分解因式:a2—25;2、分解因式16m2—9n。
【學生活動】從逆向思維入手,很快得到下面答案:
(1)a2—25=a2—52=(a+5)(a—5)。
(2)16m2—9n2=(4m)2—(3n)2=(4m+3n)(4m—3n)。
【教師活動】引導學生完成a2—b2=(a+b)(a—b)的同時,導出課題:用平方差公式因式分解。
平方差公式:a2—b2=(a+b)(a—b)。
評析:平方差公式中的字母a、b,教學中還要強調一下,可以表示數、含字母的代數式(單項式、多項式)。
二、范例學習,應用所學
【例1】把下列各式分解因式:(投影顯示或板書)
(1)x2—9y2;(2)16x4—y4;
(3)12a2x2—27b2y2;(4)(x+2y)2—(x—3y)2;
(5)m2(16x—y)+n2(y—16x)。
【思路點撥】在觀察中發現1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解。
【教師活動】啟發學生從平方差公式的角度進行因式分解,請5位學生上講臺板演。
【學生活動】分四人小組,合作探究。
解:(1)x2—9y2=(x+3y)(x—3y);
(2)16x4—y4=(4x2+y2)(4x2—y2)=(4x2+y2)(2x+y)(2x—y);
(3)12a2x2—27b2y2=3(4a2x2—9b2y2)=3(2ax+3by)(2ax—3by);
(4)(x+2y)2—(x—3y)2=[(x+2y)+(x—3y)][(x+2y)—(x—3y)]=5y(2x—y);
(5)m2(16x—y)+n2(y—16x)
=(16x—y)(m2—n2)=(16x—y)(m+n)(m—n)。