夜夜躁爽日日躁狠狠躁视频,亚洲国产精品无码久久一线,丫鬟露出双乳让老爷玩弄,第一次3q大战的经过和结果

首頁 > 教案下載 > 教案大全 > 實用的因式分解教案(精選2篇)

實用的因式分解教案

發布時間:2023-08-28

實用的因式分解教案(精選2篇)

實用的因式分解教案 篇1

  教學目標

  1、 會運用因式分解進行簡單的多項式除法。

  2、 會運用因式分解解簡單的方程。

  二、教學重點與難點教學重點:

  教學重點

  因式分解在多項式除法和解方程兩方面的應用。

  教學難點:

  應用因式分解解方程涉及較多的推理過程。

  三、教學過程

  (一)引入新課

  1、 知識回顧(1) 因式分解的幾種方法: ①提取公因式法: ma+mb=m(a+b) ②應用平方差公式: = (a+b) (a—b)③應用完全平方公式:a 2ab+b =(ab) (2) 課前熱身: ①分解因式:(x +4) y — 16x y

  (二)師生互動,講授新課

  1、運用因式分解進行多項式除法例1 計算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3

  一個小問題 :這里的x能等于3/2嗎 ?為什么?

  想一想:那么(4x —9) (3—2x) 呢?練習:課本P162課內練習

  合作學習

  想一想:如果已知 ( )( )=0 ,那么這兩個括號內應填入怎樣的數或代數式子才能夠滿足條件呢? (讓學生自己思考、相互之間討論!)事實上,若AB=0 ,則有下面的結論:(1)A和B同時都為零,即A=0,且B=0(2)A和B中有一個為零,即A=0,或B=0

  試一試:你能運用上面的結論解方程(2x+1)(3x—2)=0 嗎?3、 運用因式分解解簡單的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0則x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 則3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一個未知數的方程的解也叫做根,當方程的根多于一個時,常用帶足標的字母表示,比如:x1 ,x2

  等練習:課本P162課內練習2

  做一做!對于方程:x+2=(x+2) ,你是如何解該方程的,方程左右兩邊能同時除以(x+2)嗎?為什么?

  教師總結:運用因式分解解方程的基本步驟(1)如果方程的右邊是零,那么把左邊分解因式,轉化為解若干個一元一次方程;(2)如果方程的兩邊都不是零,那么應該先移項,把方程的右邊化為零以后再進行解方程;遇到方程兩邊有公因式,同樣需要先進行移項使右邊化為零,切忌兩邊同時除以公因式!4、知識延伸解方程:(x +4) —16x =0解:將原方程左邊分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接著繼續解方程,5、 練一練 ①已知 a、b、c為三角形的三邊,試判斷 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c為三角形的三邊 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑戰極限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx

  (三)梳理知識,總結收獲因式分解的兩種應用:

  (1)運用因式分解進行多項式除法

  (2)運用因式分解解簡單的方程

  (四)布置課后作業

  作業本6、42、課本P163作業題(選做)

實用的因式分解教案 篇2

  15.1.1 整式

  教學目標

  1.單項式、單項式的定義.

  2.多項式、多項式的次數.

  3、理解整式概念.

  教學重點

  單項式及多項式的有關概念.

  教學難點

  單項式及多項式的有關概念.

  教學過程

  Ⅰ.提出問題,創設情境

  在七年級,我們已經學習了用字母可以表示數,思考下列問題

  1.要表示△ABC的周長需要什么條件?要表示它的面積呢?

  2.小王用七小時行駛了Skm的路程,請問他的平均速度是多少?

  結論:

  1、要表示△ABC的周長,需要知道它的各邊邊長.要表示△ABC的面積需要知道一條邊長和這條邊上的高.如果設BC=a,AC=b,AB=c.AB邊上的高為h,那么△ABC的周長可以表示為a+b+c;△ABC的面積可以表示為 ?c?h.

  2.小王的平均速度是 .

  問題:這些式子有什么特征呢?

  (1)有數字、有表示數字的字母.

  (2)數字與字母、字母與字母之間還有運算符號連接.

  歸納:用基本的運算符號(運算包括加、減、乘、除、乘方與開方)把數和表示數的字母連接起來的式子叫做代數式.

  判斷上面得到的三個式子:a+b+c、 ch、 是不是代數式?(是)

  代數式可以簡明地表示數量和數量的關系.今天我們就來學習和代數式有關的整式.

  Ⅱ.明確和鞏固整式有關概念

  (出示投影)

  結論:(1)正方形的周長:4x.

  (2)汽車走過的路程:vt.

  (3)正方體有六個面,每個面都是正方形,這六個正方形全等,所以它的表面積為6a2;正方體的體積為長×寬×高,即a3.

  (4)n的相反數是-n.

  分析這四個數的特征.

  它們符合代數式的定義.這五個式子都是數與字母或字母與字母的積,而a+b+c、 ch、 中還有和與商的運算符號.還可以發現這五個代數式中字母指數各不相同,字母的個數也不盡相同.

  請同學們閱讀課本P160~P161單項式有關概念.

  根據這些定義判斷4x、vt、6a2、a3、-n、a+b+c、 ch、 這些代數式中,哪些是單項式?是單項式的,寫出它的系數和次數.

  結論:4x、vt、6a2、a3、-n、 ch是單項式.它們的系數分別是4、1、6、1、-1、 .它們的次數分別是1、2、2、3、1、2.所以4x、-n都是一次單項式;vt、6a2、 ch都是二次單項式;a3是三次單項式.

  問題:vt中v和t的指數都是1,它不是一次單項式嗎?

  結論:不是.根據定義,單項式vt中含有兩個字母,所以它的次數應該是這兩個字母的指數的和,而不是單個字母的指數,所以vt是二次單項式而不是一次單項式.

  生活中不僅僅有單項式,像a+b+c,它不是單項式,和單項式有什么聯系呢?

  寫出下列式子(出示投影)

  結論:(1)t-5.(2)3x+5y+2z.

  (3)三角尺的面積應是直角三角形的面積減去圓的面積,即 ab-3.12r2.

  (4)建筑面積等于四個矩形的面積之和.而右邊兩個已知矩形面積分別為3×2、4×3,所以它們的面積和是18.于是得這所住宅的建筑面積是x2+2x+18.

  我們可以觀察下列代數式:

  a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.發現它們都是由單項式的和組成的式子.是多個單項式的和,能不能叫多項式?

  這樣推理合情合理.請看投影,熟悉下列概念.

  根據定義,我們不難得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多項式.請分別指出它們的項和次數.

  a+b+c的項分別是a、b、c.

  t-5的項分別是t、-5,其中-5是常數項.

  3x+5y+2z的項分別是3x、5y、2z.

  ab-3.12r2的項分別是 ab、-3.12r2.

  x2+2x+18的項分別是x2、2x、18. 找多項式的次數應抓住兩條,一是找準每個項的次數,二是取每個項次數的最大值.根據這兩條很容易得到這五個多項式中前三個是一次多項式,后兩個是二次多項式.

  這節課,通過探究我們得到單項式和多項式的有關概念,它們可以反映變化的世界.同時,我們也到符號的魅力所在.我們把單項式與多項式統稱為整式.

  Ⅲ.隨堂練習

  1.課本P162練習

  Ⅳ.課時小結

  通過探究,我們了解了整式的概念.理解并掌握單項式、多項式的有關概念是本節的重點,特別是它們的次數.在現實情景中進一步理解了用字母表示數的'意義,發展符號感.

  Ⅴ.課后作業

  1.課本P165~P166習題15.1─1、5、8、9題.

  2.預習“整式的加減”.

  課后作業:《課堂感悟與探究》

  15.1.2 整式的加減(1)

  教學目的:

  1、解字母表示數量關系的過程,發展符號感。

  2、會進行整式加減的運算,并能說明其中的算理,發展有條理的思考及語言表達能力。

  教學重點:

  會進行整式加減的運算,并能說明其中的算理。

  教學難點:

  正確地去括號、合并同類項,及符號的正確處理。

  教學過程:

  一、課前練習:

  1、填空:整式包括 和

  2、單項式 的系數是 、次數是

  3、多項式 是 次 項式,其中二次項

  系數是 一次項是 ,常數項是

  4、下列各式,是同類項的一組是( )

  (A) 與 (B) 與 (C) 與

  5、去括號后合并同類項:

  二、探索練習:

  1、如果用a 、b分別表示一個兩位數的十位數字和個位數字,那么這個兩位數可以表示為 交換這個兩位數的十位數字和個位數字后得到的兩位數為

  這兩個兩位數的和為

  2、如果用a 、b、c分別表示一個三位數的百位數字、十位數字和個位數字,那么這個三位數可以表示為 交換這個三位數的百位數字和個位數字后得到的三位數為

  這兩個三位數的差為

  ●議一議:在上面的兩個問題中,分別涉及到了整式的什么運算?

  說說你是如何運算的?

  ▲整式的加減運算實質就是

  運算的結果是一個多項式或單項式。

  三、鞏固練習:

  1、填空:(1) 與 的差是

  (2)、單項式 、 、 、 的和為

  (3)如圖所示,下面為由棋子所組成的三角形,

  一個三角形需六個棋子,三個三角形需

  ( )個棋子,n個三角形需 個棋子

  2、計算:

  (1)

  (2)

  (3)

  3、(1)求 與 的和

  (2)求 與 的差

  4、先化簡,再求值: 其中

  四、提高練習:

  1、若A是五次多項式,B是三次多項式,則A+B一定是

  (A)五次整式 (B)八次多項式

  (C)三次多項式 (D)次數不能確定

  2、足球比賽中,如果勝一場記3a分,平一場記a分,負一場

  記0分,那么某隊在比賽勝5場,平3場,負2場,共積多

  少分?

  3、一個兩位數與把它的數字對調所成的數的和,一定能被14

  整除,請證明這個結論。

  4、如果關于字母x的二次多項式 的值與x的取值無關,

  試求m、n的值。

  五、小結:整式的加減運算實質就是去括號和合并同類項。

  六、作業:第8頁習題1、2、3

  15.1.2整式的加減(2)

  教學目標:1.會進行整式加減的運算,并能說明其中的算理,發展有條理的思考及其語言表達能力。

  2.通過探索規律的問題,進一步符號表示的意義,發展符號感,發展推理能力。

  教學重點整式加減的運算。

  教學難點:探索規律的猜想。

  教學方法:嘗試練習法,討論法,歸納法。

  教學用具:投影儀

  教學過程:

  I探索練習:

  擺第1個“小屋子”需要5枚棋子,擺第2個需要 枚棋子,擺第3個需要 枚棋子。按照這樣的方式繼續擺下去。

  (1)擺第10個這樣的“小屋子”需要 枚棋子

  (2)擺第n個這樣的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解決這個問題嗎?小組討論。

  二、例題講解:

  三、鞏固練習:

  1、計算:

  (1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)

  (3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)

  2、已知:A=x3-x2-1,B=x2-2,計算:(1)B-A (2)A-3B

  3、列方程解應用題:三角形三個內角的和等于180°,如果三角形中第一個角等于第二個角的3倍,而第三個角比第二個角大15°,那么

  (1)第一個角是多少度?

  (2)其他兩個角各是多少度?

  四、提高練習:

  1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的多項式?

  2、設A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+

  (y+3)2=0,且B-2A=a,求A的值。

  3、已知有理數a、b、c在數軸上(0為數軸原點)的對應點如圖:

  試化簡:│a│-│a+b│+│c-a│+│b+c│

  小 結:要善于在圖形變化中發現規律,能熟練的對整式加減進行運算。

  作 業:課本P14習題1.3:1(2)、(3)、(6),2。

實用的因式分解教案(精選2篇) 相關內容:
  • 有關因式分解教案(通用15篇)

    整式乘除與因式分解一.回顧知識點1、主要知識回顧:冪的運算性質:aman=am+n(m、n為正整數)同底數冪相乘,底數不變,指數相加.=amn(m、n為正整數)冪的乘方,底數不變,指數相乘.(n為正整數)積的乘方等于各因式乘方的積.=am-n(a≠0,m、n都...

  • 因式分解(精選12篇)

    課 題9.5乘法公式的再認識—因式分解課時分配本課(章節)需 3 課時本 節 課 為 第 3 課時為 本 學期總第 課時因式分解(三)-- 提公因式法教學目標1、 理解因式分解的意義及其與整式乘法的區別和聯系2、 了解公因式的概念,掌握提公因式...

  • 二次三項式的因式分解(通用6篇)

    一、教學目標1.使學生理解二次三項式的意義;知道二次三項式的因式分解與一元二次方程的關系;2.使學生會利用一元二次方程的求根公式在實數范圍內將二次三項式分解因式;3.通過二次三項式因式分解方法的推導,進一步啟發學生學習的興趣,...

  • 因式分解(精選15篇)

    課 題9.5乘法公式的再認識—因式分解課時分配本課(章節)需 3 課時本 節 課 為 第 3 課時為 本 學期總第 課時因式分解(三)-- 提公因式法教學目標1、 理解因式分解的意義及其與整式乘法的區別和聯系2、 了解公因式的概念,掌握提公因式...

  • 因式分解導學案

    課題:8.5 因式分解學習目標1、了解因式分解的意義以及它與正式乘法的關系。2、能確定多項式各項的公因式,會用提公因式法分解因式。學習重點:能用提公因式法分解因式。學習難點:確定因式的公因式。...

  • 《因式分解---待定系數法、換元法、添項拆項法》知識點歸納

    知識體系梳理◆ 添項拆項法有的多項式由于“缺項”,或“并項”因此不能直接分解。通過進行適當的添項或拆項后利用分組而分解的方法稱為添項、拆項法。一般來說,添項拆項后要能運用提公因式法、公式法、十字相乘法、分組分解法分解。...

  • 《因式分解-分組分解與十字相乘法》知識點歸納

    ★★ 知識體系梳理◆ 分組分解法:用分組分解法來分解的多項式一般至少有四項,分組不是盲目的,要有預見性.也就是說,分組后每組之間必須要有公因式可提取,或者分組后可直接運用公式。...

  • 因式分解

    課 題9.5乘法公式的再認識—因式分解課時分配本課(章節)需 3 課時本 節 課 為 第 3 課時為 本 學期總第 課時因式分解(三)-- 提公因式法教學目標1、 理解因式分解的意義及其與整式乘法的區別和聯系2、 了解公因式的概念,掌握提公因式...

  • 22.2.5 因式分解法

    教學內容 用因式分解法解一元二次方程. 教學目標 掌握用因式分解法解一元二次方程. 通過復習用配方法、公式法解一元二次方程,體會和探尋用更簡單的方法──因式分解法解一元二次方程,并應用因式分解法解決一些具體問題. 重難點關鍵 1.重...

  • 浙教版數學說課-因式分解說課稿

    一、說教材1、關于地位與作用。本說課的內容是數學第二冊7.1《因式分解》。因式分解不言而喻,就整個數學而言,它是打開整個代數寶庫的一把鑰匙。就本節課而言,著重闡述了兩個方面,一是因式分解的概念,二是與整式乘法的相互關系。...

  • 數學教案-二次三項式的因式分解(用公式法)

    一、教學目標 1.使學生理解二次三項式的意義;知道二次三項式的因式分解與一元二次方程的關系; 2.使學生會利用一元二次方程的求根公式在實數范圍內將二次三項式分解因式; 3.通過二次三項式因式分解方法的推導,進一步啟發學生學習的興趣...

  • 二次三項式的因式分解(用公式法)

    一、教學目標 1.使學生理解二次三項式的意義;知道二次三項式的因式分解與一元二次方程的關系; 2.使學生會利用一元二次方程的求根公式在實數范圍內將二次三項式分解因式; 3.通過二次三項式因式分解方法的推導,進一步啟發學生學習的興趣...

  • 二次三項式的因式分解(用公式法)

    一、教學目標 1.使學生理解二次三項式的意義;知道二次三項式的因式分解與一元二次方程的關系; 2.使學生會利用一元二次方程的求根公式在實數范圍內將二次三項式分解因式; 3.通過二次三項式因式分解方法的推導,進一步啟發學生學習的興趣...

  • 二次三項式的因式分解(用公式法)

    一、教學目標 1.使學生理解二次三項式的意義;知道二次三項式的因式分解與一元二次方程的關系; 2.使學生會利用一元二次方程的求根公式在實數范圍內將二次三項式分解因式; 3.通過二次三項式因式分解方法的推導,進一步啟發學生學習的興趣...

  • 二次三項式的因式分解(用公式法)

    一、教學目標 1.使學生理解二次三項式的意義;知道二次三項式的因式分解與一元二次方程的關系; 2.使學生會利用一元二次方程的求根公式在實數范圍內將二次三項式分解因式; 3.通過二次三項式因式分解方法的推導,進一步啟發學生學習的興趣...

  • 教案大全
主站蜘蛛池模板: 泰州市| 霍州市| 德州市| 青神县| 革吉县| 社旗县| 西吉县| 巫山县| 景谷| 金堂县| 馆陶县| 北流市| 杨浦区| 昆明市| 镇平县| 丰台区| 泸溪县| 金坛市| 东明县| 阳山县| 武宁县| 惠安县| 云梦县| 贡嘎县| 博客| 通辽市| 平昌县| 乐都县| 青冈县| 莱阳市| 惠州市| 马尔康县| 天水市| 静安区| 南京市| 右玉县| 巴青县| 永胜县| 平南县| 长兴县| 无锡市|