夜夜躁爽日日躁狠狠躁视频,亚洲国产精品无码久久一线,丫鬟露出双乳让老爷玩弄,第一次3q大战的经过和结果

首頁 > 教案下載 > 教案大全 > 關于高一數學教案(精選16篇)

關于高一數學教案

發布時間:2023-07-19

關于高一數學教案(精選16篇)

關于高一數學教案 篇1

  教材:邏輯聯結詞

  目的:要求學生了解復合命題的意義,并能指出一個復合命題是有哪些簡單命題與邏輯聯結詞,并能由簡單命題構成含有邏輯聯結詞的復合命題。

  過程

  一、提出課題:簡單邏輯、邏輯聯結詞

  二、命題的概念:

  例:125 ① 3是12的約數 ② 0.5是整數 ③

  定義:可以判斷真假的語句叫命題。正確的叫真命題,錯誤的叫假命題。

  如:①②是真命題,③是假命題

  反例:3是12的約數嗎? x5 都不是命題

  不涉及真假(問題) 無法判斷真假

  上述①②③是簡單命題。 這種含有變量的語句叫開語句(條件命題)。

  三、復合命題:

  1.定義:由簡單命題再加上一些邏輯聯結詞構成的命題叫復合命題。

  2.例:

  (1)10可以被2或5整除④ 10可以被2整除或10可以被5整除

  (2)菱形的對角線互相 菱形的對角線互相垂直且菱形的

  垂直且平分⑤ 對角線互相平分

  (3)0.5非整數⑥ 非0.5是整數

  觀察:形成概念:簡單命題在加上或且非這些邏輯聯結詞成復合命題。

  3.其實,有些概念前面已遇到過

  如:或:不等式 x2x60的解集 { x | x2或x3 }

  且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }

  四、復合命題的構成形式

  如果用 p, q, r, s表示命題,則復合命題的形式接觸過的有以下三種:

  即: p或q (如 ④) 記作 pq

  p且q (如 ⑤) 記作 pq

  非p (命題的否定) (如 ⑥) 記作 p

  小結:1.命題 2.復合命題 3.復合命題的構成形式

關于高一數學教案 篇2

  一、教材分析

  函數作為初等數學的核心內容,貫穿于整個初等數學體系之中。函數這一章在高中數學中,起著承上啟下的作用,它是對初中函數概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數上,把函數看成變量之間的依賴關系,而高中階段不僅把函數看成變量之間的依賴關系,更是從“變量說”到“對應說”,這是對函數本質特征的進一步認識,也是學生認識上的一次飛躍。這一章內容滲透了函數的思想,集合的思想以及數學建模的思想等內容,這些內容的學習,無疑對學生今后的學習起著深刻的影響。

  本節《函數的概念》是函數這一章的起始課。概念是數學的基礎,只有對概念做到深刻理解,才能正確靈活地加以應用。本課從集合間的對應來描繪函數概念,起到了上承集合,下引函數的作用。也為進一步學習函數這一章的其它內容提供了方法和依據。

  二、重難點分析

  根據對上述對教材的分析及新課程標準的要求,確定函數的概念既是本節課的重點,也應該是本章的難點。

  三、學情分析

  1、有利因素:一方面學生在初中已經學習了變量觀點下的函數定義,并具體研究了幾類最簡單的函數,對函數已經有了一定的感性認識;另一方面在本書第一章學生已經學習了集合的概念,這為學習函數的現代定義打下了基礎。

  2、不利因素:函數在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應來描繪函數概念,是一個抽象過程,要求學生的抽象、分析、概括的能力比較高,學生學起來有一定的難度。

  四、目標分析

  1、理解函數的概念,會用函數的定義判斷函數,會求一些最基本的函數的定義域、值域。

  2、通過對實際問題分析、抽象與概括,培養學生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。

  3、通過對函數概念形成的探究過程,培養學生發現問題,探索問題,不斷超越的創新品質。

  五、教法學法

  本節課的教學以學生為主體、教師是數學課堂活動的組織者、引導者和參與者,我一方面精心設計問題情景,引導學生主動探索。另一方面,依據本節為概念學習的特點,以問題的提出、問題的解決為主線,始終在學生知識的“最近發展區”設置問題,倡導學生主動參與,通過不斷探究、發現,在師生互動、生生互動中,讓學習過程成為學生心靈愉悅的主動認知過程。

  學法方面,學生通過對新舊兩種函數定義的對比,在集合論的觀點下初步建構出函數的概念。在理解函數概念的基礎上,建構出函數的定義域、值域的概念,并初步掌握它們的求法。

關于高一數學教案 篇3

  第二十四教時

  教材:倍角公式,推導和差化積及積化和差公式

  目的:繼續復習鞏固倍角公式,加強對公式靈活運用的訓練;同時,讓學生推導出和差化積和積化和差公式,并對此有所了解。

  過程:

  一、 復習倍角公式、半角公式和萬能公式的推導過程:

  例一、 已知 , ,tan = ,tan = ,求2 +

  (《教學與測試》P115 例三)

  解:

  又∵tan2 0,tan 0 ,

  2 + =

  例二、 已知sin cos = , ,求 和tan的值

  解:∵sin cos =

  化簡得:

  ∵ 即

  二、 積化和差公式的推導

  sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]

  sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]

  cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]

  cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]

  這套公式稱為三角函數積化和差公式,熟悉結構,不要求記憶,它的優點在于將積式化為和差,有利于簡化計算。(在告知公式前提下)

  例三、 求證:sin3sin3 + cos3cos3 = cos32

  證:左邊 = (sin3sin)sin2 + (cos3cos)cos2

  = (cos4 cos2)sin2 + (cos4 + cos2)cos2

  = cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2

  = cos4cos2 + cos2 = cos2(cos4 + 1)

  = cos22cos22 = cos32 = 右邊

  原式得證

  三、 和差化積公式的推導

  若令 + = , = ,則 , 代入得:

  這套公式稱為和差化積公式,其特點是同名的正(余)弦才能使用,它與積化和差公式相輔相成,配合使用。

  例四、 已知cos cos = ,sin sin = ,求sin( + )的值

  解:∵cos cos = , ①

  sin sin = , ②

  四、 小結:和差化積,積化和差

  五、 作業:《課課練》P3637 例題推薦 13

  P3839 例題推薦 13

  P40 例題推薦 13

關于高一數學教案 篇4

  教學目標

  會運用圖象判斷單調性;理解函數的單調性,能判斷或證明一些簡單函數單調性;注意必須在定義域內或其子集內討論函數的單調性。

  重 點

  函數單調性的證明及判斷。

  難 點

  函數單調性證明及其應用。

  一、復習引入

  1、函數的定義域、值域、圖象、表示方法

  2、函數單調性

  (1)單調增函數

  (2)單調減函數

  (3)單調區間

  二、例題分析

  例1、畫出下列函數圖象,并寫出單調區間:

  (1) (2) (2)

  例2、求證:函數 在區間 上是單調增函數。

  例3、討論函數 的單調性,并證明你的結論。

  變(1)討論函數 的單調性,并證明你的結論

  變(2)討論函數 的單調性,并證明你的結論。

  例4、試判斷函數 在 上的單調性。

  三、隨堂練習

  1、判斷下列說法正確的是 。

  (1)若定義在 上的函數 滿足 ,則函數 是 上的單調增函數;

  (2)若定義在 上的函數 滿足 ,則函數 在 上不是單調減函數;

  (3)若定義在 上的函數 在區間 上是單調增函數,在區間 上也是單調增函數,則函數 是 上的單調增函數;

  (4)若定義在 上的函數 在區間 上是單調增函數,在區間 上也是單調增函數,則函數 是 上的單調增函數。

  2、若一次函數 在 上是單調減函數,則點 在直角坐標平面的( )

  A.上半平面 B.下半平面 C.左半平面 D.右半平面

  3、函數 在 上是___ ___;函數 在 上是__ _____。

  3.下圖分別為函數 和 的圖象,求函數 和 的單調增區間。

  4、求證:函數 是定義域上的單調減函數。

  四、回顧小結

  1、函數單調性的判斷及證明。

  課后作業

  一、基礎題

  1、求下列函數的單調區間

  (1) (2)

  2、畫函數 的圖象,并寫出單調區間。

  二、提高題

  3、求證:函數 在 上是單調增函數。

  4、若函數 ,求函數 的單調區間。

  5、若函數 在 上是增函數,在 上是減函數,試比較 與 的大小。

  三、能力題

  6、已知函數 ,試討論函數f(x)在區間 上的單調性。

  變(1)已知函數 ,試討論函數f(x)在區間 上的單調性。

關于高一數學教案 篇5

  教學準備

  教學目標

  熟悉與數列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。

  教學重難點

  熟悉與數列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。

  教學過程

  【復習要求】熟悉與數列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。

  【方法規律】應用數列知識界實際應用問題的關鍵是通過對實際問題的綜合分析,確定其數學模型是等差數列,還是等比數列,并確定其首項,公差或公比等基本元素,然后設計合理的計算方案,即數學建模是解答數列應用題的關鍵。

  一、基礎訓練

  1、某種細菌在培養過程中,每20分鐘*一次一個*為兩個,經過3小時,這種細菌由1個可繁殖成

  A、511B、512C、1023D、1024

  2、若一工廠的生產總值的月平均增長率為p,則年平均增長率為

  A、B、

  C、D、

  二、典型例題

  例1:某人每期期初到銀行存入一定金額A,每期利率為p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,問到第n期期末的本金和是多少?

  評析:此例來自一種常見的存款叫做零存整取。存款的方式為每月的某日存入一定的金額,這是零存,一定時期到期,可以提出全部本金及利息,這是整取。計算本利和就是本例所用的有窮等差數列求和的方法。用實際問題列出就是:本利和=每期存入的金額[存期+1/2存期存期+1利率]

  例2:某人從1999到20xx年間,每年6月1日都到銀行存入m元的一年定期儲蓄,若每年利率q保持不變,且每年到期的存款本息均自動轉為新的一年定期,到20xx年6月1日,此人到銀行不再存款,而是將所有存款的本息全部取回,則取回的金額是多少元?

  例3、某地區位于沙漠邊緣,人與自然進行長期頑強的斗爭,到1999年底全地區的綠化率已達到30%,從20xx年開始,每年將出現以下的變化:原有沙漠面積的16%將栽上樹,改造為綠洲,同時,原有綠洲面積的4%又被侵蝕,變為沙漠。問經過多少年的努力才能使全縣的綠洲面積超過60%。lg2=0.3

  例4、流行性感冒簡稱流感是由流感病毒引起的急性呼吸道傳染病。某市去年11月分曾發生流感,據資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數最多?并求這一天的新患者人數。

關于高一數學教案 篇6

  教學目標

  1.理解等比數列的概念,掌握等比數列的通項公式,并能運用公式解決簡單的問題.

  (1)正確理解等比數列的定義,了解公比的概念,明確一個數列是等比數列的限定條件,能根據定義判斷一個數列是等比數列,了解等比中項的概念;

  (2)正確認識使用等比數列的表示法,能靈活運用通項公式求等比數列的首項、公比、項數及指定的項;

  (3)通過通項公式認識等比數列的性質,能解決某些實際問題.

  2.通過對等比數列的研究,逐步培養學生觀察、類比、歸納、猜想等思維品質.

  3.通過對等比數列概念的歸納,進一步培養學生嚴密的思維習慣,以及實事求是的科學態度.

  教材分析

  (1)知識結構

  等比數列是另一個簡單常見的數列,研究內容可與等差數列類比,首先歸納出等比數列的定義,導出通項公式,進而研究圖像,又給出等比中項的概念,最后是通項公式的應用.

  (2)重點、難點分析

  教學重點是等比數列的定義和對通項公式的認識與應用,教學難點在于等比數列通項公式的推導和運用.

  ①與等差數列一樣,等比數列也是特殊的數列,二者有許多相同的性質,但也有明顯的區別,可根據定義與通項公式得出等比數列的特性,這些是教學的重點.

  ②雖然在等差數列的學習中曾接觸過不完全歸納法,但對學生來說仍然不熟悉;在推導過程中,需要學生有一定的觀察分析猜想能力;第一項是否成立又須補充說明,所以通項公式的推導是難點.

  ③對等差數列、等比數列的綜合研究離不開通項公式,因而通項公式的靈活運用既是重點又是難點.

  教學建議

  (1)建議本節課分兩課時,一節課為等比數列的概念,一節課為等比數列通項公式的應用.

  (2)等比數列概念的引入,可給出幾個具體的例子,由學生概括這些數列的相同特征,從而得到等比數列的定義.也可將幾個等差數列和幾個等比數列混在一起給出,由學生將這些數列進行分類,有一種是按等差、等比來分的,由此對比地概括等比數列的定義.

  (3)根據定義讓學生分析等比數列的公比不為0,以及每一項均不為0的特性,加深對概念的理解.

  (4)對比等差數列的表示法,由學生歸納等比數列的各種表示法.啟發學生用函數觀點認識通項公式,由通項公式的結構特征畫數列的圖象.

  (5)由于有了等差數列的研究經驗,等比數列的研究完全可以放手讓學生自己解決,教師只需把握課堂的節奏,作為一節課的組織者出現.

  (6)可讓學生相互出題,解題,講題,充分發揮學生的主體作用.

關于高一數學教案 篇7

  教學目標

  1.理解分數指數冪的含義,了解實數指數冪的意義。

  2.掌握有理數指數冪的運算性質,靈活的運用乘法公式進行有理數指數冪的運算和化簡,會進行根式與分數指數冪的相互轉化。

  教學重點

  1.分數指數冪含義的理解。

  2.有理數指數冪的.運算性質的理解。

  3.有理數指數冪的運算和化簡。

  教學難點

  1.分數指數冪含義的理解。

  2.有理數指數冪的運算和化簡。

  教學過程

  一.問題情景

  上節課研究了根式的意義及根式的性質,那么根式與指數冪有什么關系?整數指數冪有那些運算性質?

  二.學生活動

  1.說出下列各式的意義,并指出其結果的指數,被開方數的指數及根指數三者之間的關系

  (1)=(2)=

  2.從上述問題中,你能得到的結論為

  3.(a0)及(a0)能否化成指數冪的形式?

  三.數學理論

  正分數指數冪的意義:=(a0,m,n均為正整數)

  負分數指數冪的意義:=(a0,m,n均為正整數)

  1.規定:0的正分數指數冪仍是0,即=0

  0的負分數指數冪無意義。

  3.規定了分數指數冪的意義后,指數的概念從整數指數推廣到了有理數指數,因而整數指數冪的運算性質同樣適用于有理數指數冪。

  即=(1)

  =(2)其中s,tQ,a0,b0

  =(3)

  四.數學運用

  例1求值:

  (1)(2)(3)(4)

  例2用分數指數冪的形式表示下列各式(a0)

  (1)(2)

  例3化簡

  (1)

  (2)(3)

  例4化簡

  例5已知求(1)(2)

  五.回顧小結

  1.分數指數冪的意義。=(0,m,n)

  無意義

  2.有理數指數冪的運算性質

  3.整式運算律及乘法公式在分數指數冪運算中仍適用

  4.指數概念從整數指數冪推廣到有理數指數冪,同樣可以推廣到實數指數冪,請同學們閱讀P47的閱讀部分

  練習P47-48練習1,2,3,4

  六.課外作業

  P48習題2.2(1)2,4

關于高一數學教案 篇8

  案例背景:

  對數函數是函數中又一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的.故是對上述知識的應用,也是對函數這一重要數學思想的進一步認識與理解.對數函數的概念,圖象與性質的學習使學生的知識體系更加完整,系統,同時又是對數和函數知識的拓展與延伸.它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數方程,對數不等式的基礎.

  案例敘述:

  (一).創設情境

  (師):前面的幾種函數都是以形式定義的方式給出的,今天我們將從反函數的角度介紹新的函數.

  反函數的實質是研究兩個函數的關系,所以自然我們應從大家熟悉的函數出發,再研究其反函數.這個熟悉的函數就是指數函數.

  (提問):什么是指數函數?指數函數存在反函數嗎?

  (學生): 是指數函數,它是存在反函數的.

  (師):求反函數的步驟

  (由一個學生口答求反函數的過程):

  由 得 .又 的值域為 ,

  所求反函數為 .

  (師):那么我們今天就是研究指數函數的反函數-----對數函數.

  (二)新課

  1.(板書) 定義:函數 的反函數 叫做對數函數.

  (師):由于定義就是從反函數角度給出的,所以下面我們的研究就從這個角度出發.如從定義中你能了解對數函數的什么性質嗎?最初步的認識是什么?

  (教師提示學生從反函數的三定與三反去認識,學生自主探究,合作交流)

  (學生)對數函數的定義域為 ,對數函數的值域為 ,且底數 就是指數函數中的 ,故有著相同的限制條件 .

  (在此基礎上,我們將一起來研究對數函數的圖像與性質.)

  2.研究對數函數的圖像與性質

  (提問)用什么方法來畫函數圖像?

  (學生1)利用互為反函數的兩個函數圖像之間的關系,利用圖像變換法畫圖.

  (學生2)用列表描點法也是可以的。

  請學生從中上述方法中選出一種,大家最終確定用圖像變換法畫圖.

  (師)由于指數函數的圖像按 和 分成兩種不同的類型,故對數函數的圖像也應以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.

  具體操作時,要求學生做到:

  (1) 指數函數 和 的圖像要盡量準確(關鍵點的位置,圖像的變化趨勢等).

  (2) 畫出直線 .

  (3) 的圖像在翻折時先將特殊點 對稱點 找到,變化趨勢由靠近 軸對稱為逐漸靠近 軸,而 的圖像在翻折時可提示學生分兩段翻折,在 左側的先翻,然后再翻在 右側的部分.

  學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出

  和 的圖像.(此時同底的指數函數和對數函數畫在同一坐標系內)如圖:

  教師畫完圖后再利用電腦將 和 的圖像畫在同一坐標系內,如圖:

  然后提出讓學生根據圖像說出對數函數的性質(要求從幾何與代數兩個角度說明)

  3. 性質

  (1) 定義域:

  (2) 值域:

  由以上兩條可說明圖像位于 軸的右側.

  (3)圖像恒過(1,0)

  (4) 奇偶性:既不是奇函數也不是偶函數,即它不關于原點對稱,也不關于 軸對稱.

  (5) 單調性:與 有關.當 時,在 上是增函數.即圖像是上升的

  當 時,在 上是減函數,即圖像是下降的.

  之后可以追問學生有沒有最大值和最小值,當得到否定答案時,可以再問能否看待何時函數值為正?學生看著圖可以答出應有兩種情況:

  當 時,有 ;當 時,有 .

  學生回答后教師可指導學生巧記這個結論的方法:當底數與真數在1的同側時函數值為正,當底數與真數在1的兩側時,函數值為負,并把它當作第(6)條性質板書記下來.

  最后教師在總結時,強調記住性質的關鍵在于要腦中有圖.且應將其性質與指數函數的性質對比記憶.(特別強調它們單調性的一致性)

  對圖像和性質有了一定的了解后,一起來看看它們的應用.

  (三).簡單應用

  1. 研究相關函數的性質

  例1. 求下列函數的定義域:

  (1) (2) (3)

  先由學生依次列出相應的不等式,其中特別要注意對數中真數和底數的條件限制.

  2. 利用單調性比較大小

  例2. 比較下列各組數的大小

  (1) 與 ; (2) 與 ;

  (3) 與 ; (4) 與 .

  讓學生先說出各組數的特征即它們的底數相同,故可以構造對數函數利用單調性來比大小.最后讓學生以其中一組為例寫出詳細的比較過程.

  三.拓展練習

  練習:若 ,求 的取值范圍.

  四.小結及作業

  案例反思:

  本節的教學重點是理解對數函數的定義,掌握對數函數的圖象性質.難點是利用指數函數的圖象和性質得到對數函數的圖象和性質.由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,因而在教學上采取教師逐步引導,學生自主合作的方式,從學生熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.

  在教學中一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地以反函數這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.

關于高一數學教案 篇9

  教學目標:①掌握對數函數的性質。

  ②應用對數函數的性質可以解決:對數的大小比較,求復

  合函數的定義域、值 域及單調性。

  ③ 注重函數思想、等價轉化、分類討論等思想的滲透,提高

  解題能力。

  教學重點與難點:對數函數的性質的應用。

  教學過程設計:

  ⒈復習提問:對數函數的概念及性質。

  ⒉開始正課

  1 比較數的大小

  例 1 比較下列各組數的大小。

  ⑴loga5.1 ,loga5.9 (a>0,a≠1)

  ⑵log0.50.6 ,logЛ0.5 ,lnЛ

  師:請同學們觀察一下⑴中這兩個對數有何特征?

  生:這兩個對數底相等。

  師:那么對于兩個底相等的對數如何比大小?

  生:可構造一個以a為底的對數函數,用對數函數的'單調性比大小。

  師:對,請敘述一下這道題的解題過程。

  生:對數函數的單調性取決于底的大小:當0

  調遞減,所以loga5.1>loga5.9 ;當a>1時,函數y=logax單調遞

  增,所以loga5.1

  板書:

  解:Ⅰ)當0

  ∵5.1loga5.9

  Ⅱ)當a>1時,函數y=logax在(0,+∞)上是增函數,

  ∵5.10,lnЛ>0,logЛ0.51,

  log0.50.62},{(x,y)|y=x2+1},{x|直角三角形},…;

  說明:

  1.課本P5最后一段話;

  2.描述法表示集合應注意集合的代表元素,如{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}是不同的兩個集合,只要不引起誤解,集合的代表元素也可省略,例如:{x|整數},即代表整數集Z。

  辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。

  例2.(課本例2)試分別用列舉法和描述法表示下列集合:

  (1)方程x2—2=0的所有實數根組成的集合;

  (2)由大于10小于20的所有整數組成的集合;

  (3)方程組 的解。

  思考3:(課本P6思考)

  說明:列舉法與描述法各有優點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

  (二).課堂練習:

  1.課本P6練習2;

  2.用適當的方法表示集合:大于0的所有奇數

  3.集合A={x| ∈Z,x∈N},則它的元素是 。

  4.已知集合A={x|-3

  歸納小結:

  本節課從實例入手,介紹了集合的常用表示方法,包括列舉法、描述法。

  作業布置:

  1. 習題1.1,第3.4題;

  2. 課后預習集合間的基本關系.

關于高一數學教案 篇10

  教學目標:

  (1)了解集合的表示方法;

  (2)能正確選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

  教學重點:掌握集合的表示方法;

  教學難點:選擇恰當的表示方法;

  教學過程:

  一、復習回顧:

  1.集合和元素的定義;元素的三個特性;元素與集合的關系;常用的數集及表示。

  2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分別是什么?有何關系

  二、新課教學

  (一).集合的表示方法

  我們可以用自然語言和圖形語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

  (1) 列舉法:把集合中的元素一一列舉出來,并用花括號“ ”括起來表示集合的方法叫列舉法。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;

  說明:1.集合中的元素具有無序性,所以用列舉法表示集合時不必考

  慮元素的順序。

  2.各個元素之間要用逗號隔開;

  3.元素不能重復;

  4.集合中的元素可以數,點,代數式等;

  5.對于含有較多元素的集合,用列舉法表示時,必須把元素間的規律顯示清楚后方能用省略號,象自然數集N用列舉法表示為

  例1.(課本例1)用列舉法表示下列集合:

  (1)小于10的所有自然數組成的集合;

  (2)方程x2=x的所有實數根組成的'集合;

  (3)由1到20以內的所有質數組成的集合;

  (4)方程組 的解組成的集合。

  思考2:(課本P4的思考題)得出描述法的定義:

  (2)描述法:把集合中的元素的公共屬性描述出來,寫在花括號{ }內。

  具體方法:在花括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

  一般格式:

  如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;

  說明:

  1.課本P5最后一段話;

  2.描述法表示集合應注意集合的代表元素,如{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}是不同的兩個集合,只要不引起誤解,集合的代表元素也可省略,例如:{x|整數},即代表整數集Z。

  辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。

  例2.(課本例2)試分別用列舉法和描述法表示下列集合:

  (1)方程x2—2=0的所有實數根組成的集合;

  (2)由大于10小于20的所有整數組成的集合;

  (3)方程組 的解。

  思考3:(課本P6思考)

  說明:列舉法與描述法各有優點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

  (二).課堂練習:

  1.課本P6練習2;

  2.用適當的方法表示集合:大于0的所有奇數

  3.集合A={x| ∈Z,x∈N},則它的元素是 。

  4.已知集合A={x|-3

  歸納小結:

  本節課從實例入手,介紹了集合的常用表示方法,包括列舉法、描述法。

  作業布置:

  1. 習題1.1,第3.4題;

  2. 課后預習集合間的基本關系.

關于高一數學教案 篇11

  教學目標:①掌握對數函數的性質。

  ②應用對數函數的性質可以解決:對數的大小比較,求復

  合函數的定義域、值 域及單調性。

  ③ 注重函數思想、等價轉化、分類討論等思想的滲透,提高

  解題能力。

  教學重點與難點:對數函數的.性質的應用。

  教學過程設計:

  ⒈復習提問:對數函數的概念及性質。

  ⒉開始正課

  1 比較數的大小

  例 1 比較下列各組數的大小。

  ⑴loga5.1 ,loga5.9 (a>0,a≠1)

  ⑵log0.50.6 ,logЛ0.5 ,lnЛ

  師:請同學們觀察一下⑴中這兩個對數有何特征?

  生:這兩個對數底相等。

  師:那么對于兩個底相等的對數如何比大小?

  生:可構造一個以a為底的對數函數,用對數函數的單調性比大小。

  師:對,請敘述一下這道題的解題過程。

  生:對數函數的單調性取決于底的大小:當0

  調遞減,所以loga5.1>loga5.9 ;當a>1時,函數y=logax單調遞

  增,所以loga5.1

  板書:

  解:Ⅰ)當0

  ∵5.1loga5.9

  Ⅱ)當a>1時,函數y=logax在(0,+∞)上是增函數,

  ∵5.10,lnЛ>0,logЛ0.51,

  log0.50.6<1,所以logл0.5< log0.50.6< lnл。

  板書:略。

  師:比較對數值的大小常用方法:①構造對數函數,直接利用對數函

  數 的單調性比大小,②借用“中間量”間接比大小,③利用對數

  函數圖象的位置關系來比大小。

  2 函數的定義域, 值 域及單調性。

關于高一數學教案 篇12

  教學目標:

  1.進一步理解對數函數的性質,能運用對數函數的相關性質解決對數型函數的常見問題.

  2.培養學生數形結合的思想,以及分析推理的能力.

  教學重點:

  對數函數性質的應用.

  教學難點:

  對數函數的性質向對數型函數的演變延伸.

  教學過程:

  一、問題情境

  1.復習對數函數的性質.

  2.回答下列問題.

  (1)函數y=log2x的值域是 ;

  (2)函數y=log2x(x≥1)的值域是 ;

  (3)函數y=log2x(0

  3.情境問題.

  函數y=log2(x2+2x+2)的定義域和值域分別如何求呢?

  二、學生活動

  探究完成情境問題.

  三、數學運用

  例1 求函數y=log2(x2+2x+2)的定義域和值域.

  練習:

  (1)已知函數y=log2x的值域是[-2,3],則x的范圍是________________.

  (2)函數 ,x(0,8]的值域是 .

  (3)函數y=log (x2-6x+17)的值域 .

  (4)函數 的值域是_______________.

  例2 判斷下列函數的奇偶性:

  (1)f (x)=lg (2)f (x)=ln( -x)

  例3 已知loga 0.75>1,試求實數a 取值范圍.

  例4 已知函數y=loga(1-ax)(a>0,a≠1).

  (1)求函數的定義域與值域;

  (2)求函數的單調區間.

  練習:

  1.下列函數(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域為R的有 (請寫出所有正確結論的序號).

  2.函數y=lg( -1)的圖象關于 對稱.

  3.已知函數 (a>0,a≠1)的圖象關于原點對稱,那么實數m= .

  4.求函數 ,其中x [ ,9]的值域.

  四、要點歸納與方法小結

  (1)借助于對數函數的性質研究對數型函數的定義域與值域;

  (2)換元法;

  (3)能畫出較復雜函數的圖象,根據圖象研究函數的性質(數形結合).

  五、作業

  課本P70~71-4,5,10,11.

關于高一數學教案 篇13

  【摘要】鑒于大家對數學網十分關注,小編在此為大家整理了此文空間幾何體的三視圖和直觀圖高一數學教案,供大家參考!

  本文題目:空間幾何體的三視圖和直觀圖高一數學教案

  第一課時 1.2.1中心投影與平行投影 1.2.2空間幾何體的三視圖

  教學要求:能畫出簡單幾何體的三視圖;能識別三視圖所表示的空間幾何體.

  教學重點:畫出三視圖、識別三視圖.

  教學難點:識別三視圖所表示的空間幾何體.

  教學過程:

  一、新課導入:

  1. 討論:能否熟練畫出上節所學習的幾何體?工程師如何制作工程設計圖紙?

  2. 引入:從不同角度看廬山,有古詩:橫看成嶺側成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中。 對于我們所學幾何體,常用三視圖和直觀圖來畫在紙上.

  三視圖:觀察者從不同位置觀察同一個幾何體,畫出的空間幾何體的圖形;

  直觀圖:觀察者站在某一點觀察幾何體,畫出的空間幾何體的圖形.

  用途:工程建設、機械制造、日常生活.

  二、講授新課:

  1. 教學中心投影與平行投影:

  ① 投影法的提出:物體在光線的照射下,就會在地面或墻壁上產生影子。人們將這種自然現象加以科學的抽象,總結其中的規律,提出了投影的'方法。

  ② 中心投影:光由一點向外散射形成的投影。其投影的大小隨物體與投影中心間距離的變化而變化,所以其投影不能反映物體的實形.

  ③ 平行投影:在一束平行光線照射下形成的投影. 分正投影、斜投影.

  討論:點、線、三角形在平行投影后的結果.

  2. 教學柱、錐、臺、球的三視圖:

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖

  討論:三視圖與平面圖形的關系? 畫出長方體的三視圖,并討論所反應的長、寬、高

  結合球、圓柱、圓錐的模型,從正面(自前而后)、側面(自左而右)、上面(自上而下)三個角度,分別觀察,畫出觀察得出的各種結果. 正視圖、側視圖、俯視圖.

  ③ 試畫出:棱柱、棱錐、棱臺、圓臺的三視圖. (

  ④ 討論:三視圖,分別反應物體的哪些關系(上下、左右、前后)?哪些數量(長、寬、高)

  正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

  俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

  側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

  ⑤ 討論:根據以上的三視圖,如何逆向得到幾何體的形狀.

  (試變化以上的三視圖,說出相應幾何體的擺放)

  3. 教學簡單組合體的三視圖:

  ① 畫出教材P16 圖(2)、(3)、(4)的三視圖.

  ② 從教材P16思考中三視圖,說出幾何體.

  4. 練習:

  ① 畫出正四棱錐的三視圖.

  畫出右圖所示幾何體的三視圖.

  ③ 右圖是一個物體的正視圖、左視圖和俯視圖,試描述該物體的形狀.

  5. 小結:投影法;三視圖;順與逆

  三、鞏固練習: 練習:教材P17 1、2、3、4

  第二課時 1.2.3 空間幾何體的直觀圖

  教學要求:掌握斜二測畫法;能用斜二測畫法畫空間幾何體的直觀圖.

  教學重點:畫出直觀圖.

關于高一數學教案 篇14

  知識結構

  重難點分析

  本節的重點是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計算進行,而二次根式的化簡不但涉及到前面學習過的算術平方根、二次根式等概念與二次根式的運算性質,還要牽涉到絕對值以及各種非負數、因式分解等知識,在應用中常常需要對字母進行分類討論.

  本節的難點是正確理解與應用公式.這個公式的表達形式對學生來說,比較生疏,而實際運用時,則要牽涉到對字母取值范圍的討論,學生往往容易出現錯誤.

  教法建議

  1.性質的引入方法很多,以下2種比較常用:

  (1)設計問題引導啟發:由設計的問題

  1)、各等于什么?

  2)、各等于什么?

  啟發、引導學生猜想出

  (2)從算術平方根的意義引入.

  2.性質的鞏固有兩個方面需要注意:

  (1)注意與性質進行對比,可出幾道類型不同的題進行比較;

  (2)學生初次接觸這種形式的表示方式,在教學時要注意細分層次加以鞏固,如單個數字,單個字母,單項式,可進行因式分解的多項式,等等.

  (第1課時)

  一、教學目標

  1.掌握二次根式的性質

  2.能夠利用二次根式的性質化簡二次根式

  3.通過本節的學習滲透分類討論的數學思想和方法

  二、教學設計

  對比、歸納、總結

  三、重點和難點

  1.重點:理解并掌握二次根式的性質

  2.難點:理解式子中的可以取任意實數,并能根據字母的取值范圍正確地化簡有關的二次根式.

  四、課時安排

  1課時

  五、教B具學具準備

  投影儀、膠片、多媒體

  六、師生互動活動設計

  復習對比,歸納整理,應用提高,以學生活動為主

  七、教學過程

  一、導入新課

  我們知道,式子表示非負數的算術平方根.

  問:式子的意義是什么?被開方數中的表示的是什么數?

  答:式子表示非負數的算術平方根,即,且,從而可以取任意實數.

  二、新課

  計算下列各題,并回答以下問題:

  (1);(2);(3);

  1.各小題中被開方數的冪的底數都是什么數?

  2.各小題的結果和相應的被開方數的冪的底數有什么關系?

  3.用字母表示被開方數的冪的底數,將有怎樣的結論?并用語言敘述你的結論.

關于高一數學教案 篇15

  目標:

  1.讓學生熟練掌握二次函數的圖象,并會判斷一元二次方程根的存在性及根的個數 ;

  2.讓學生了解函數的零點與方程根的聯系 ;

  3.讓學生認識到函數的圖象及基本性質(特別是單調性)在確定函數零點中的作用 ;

  4。培養學生動手操作的能力 。

  二、教學重點、難點

  重點:零點的概念及存在性的判定;

  難點:零點的確定。

  三、復習引入

  例1:判斷方程 x2-x-6=0 解的存在。

  分析:考察函數f(x)= x2-x-6, 其

  圖像為拋物線容易看出,f(0)=-60,

  f(4)0,f(-4)0

  由于函數f(x)的圖像是連續曲線,因此,

  點B (0,-6)與點C(4,6)之間的那部分曲線

  必然穿過x軸,即在區間(0,4)內至少有點

  X1 使f(X1)=0;同樣,在區間(-4,0) 內也至

  少有點X2,使得f( X2)=0,而方程至多有兩

  個解,所以在(-4,0),(0,4)內各有一解

  定義:對于函數y=f(x),我們把使f(x)=0的實數 x叫函數y=f(x)的零點

  抽象概括

  y=f(x)的圖像與x軸的交點的橫坐標叫做該函數的零點,即f(x)=0的解。

  若y=f(x)的圖像在[a,b]上是連續曲線,且f(a)f(b)0,則在(a,b)內至少有一個零點,即f(x)=0在 (a,b)內至少有一個實數解。

  f(x)=0有實根(等價與y=f(x))與x軸有交點(等價與)y=f(x)有零點

  所以求方程f(x)=0的根實際上也是求函數y=f(x)的零點

  注意:1、這里所說若f(a)f(b)0,則在區間(a,b)內方程f(x)=0至少有一個實數解指出了方程f(x)=0的實數解的存在性,并不能判斷具體有多少個解;

  2、若f(a)f(b)0,且y=f(x)在(a,b)內是單調的,那么,方程f(x)=0在(a,b)內有唯一實數解;

  3、我們所研究的大部分函數,其圖像都是連續的曲線;

  4、但此結論反過來不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

  5、缺少條件在[a,b]上是連續曲線則不成立,如:f(x)=1/ x,有f(-1)xf(1)0但沒有零點。

  四、知識應用

  例2:已知f(x)=3x-x2 ,問方程f(x)=0在區間[-1,0]內沒有實數解?為什么?

  解:f(x)=3x-x2的圖像是連續曲線, 因為

  f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,

  所以f(-1) f(0) 0,在區間[-1,0]內有零點,即f(x)=0在區間[-1,0]內有實數解

  練習:求函數f(x)=lnx+2x-6 有沒有零點?

  例3 判定(x-2)(x-5)=1有兩個相異的實數解,且有一個大于5,一個小于2。

  解:考慮函數f(x)=(x-2)(x-5)-1,有

  f(5)=(5-2)(5-5)-1=-1

  f(2)=(2-2)(2-5)-1=-1

  又因為f(x)的圖像是開口向上的拋物線,所以拋物線與橫軸在(5,+)內有一個交點,在( -,2)內也有一個交點,所以方程式(x-2)(x-5)=1有兩個相異數解,且一個大于5,一個小于2。

  練習:關于x的方程2x2-3x+2m=0有兩個實根均在[-1,1]內,求m的取值范圍。

  五、課后作業

  p133第2,3題

關于高一數學教案 篇16

  【學習目標】

  1、感受數學探索的成功感,提高學習數學的興趣;

  2、經歷誘導公式的探索過程,感悟由未知到已知、復雜到簡單的數學轉化思想。

  3、能借助單位圓的對稱性理解記憶誘導公式,能用誘導公式進行簡單應用。

  【學習重點】三角函數的誘導公式的理解與應用

  【學習難點】誘導公式的推導及靈活運用

  【知識鏈接】(1)單位圓中任意角α的正弦、余弦的定義

  (2)對稱性:已知點P(x,),那么,點P關于x軸、軸、原點對稱的點坐標

  【學習過程】

  一、預習自學

  閱讀書第19頁——20頁內容,通過對-α、π-α、π+α、2π-α、α的終邊與單位圓的交點的對稱性規律的探究,結合單位圓中任意角的正弦、余弦的'定義,從中自我發現歸納出三角函數的誘導公式,并寫出下列關系:

  (1)- 407[導學案]4.4單位圓的對稱性與誘導公式與 407[導學案]4.4單位圓的對稱性與誘導公式 的正弦函數、余弦函數關系

  (2)角407[導學案]4.4單位圓的對稱性與誘導公式與角 407[導學案]4.4單位圓的對稱性與誘導公式 的正弦函數、余弦函數關系

  (3)角 407[導學案]4.4單位圓的對稱性與誘導公式與角 407[導學案]4.4單位圓的對稱性與誘導公式 的正弦函數、余弦函數關系

  (4)角 407[導學案]4.4單位圓的對稱性與誘導公式與角 407[導學案]4.4單位圓的對稱性與誘導公式 的正弦函數、余弦函數關系

  二、合作探究

  探究1、求下列函數值,思考你用到了哪些三角函數誘導公式?試總結一下求任意角的三角函數值的過程與方法。

  (1) 407[導學案]4.4單位圓的對稱性與誘導公式 (2) 407[導學案]4.4單位圓的對稱性與誘導公式 (3)sin(-1650°);

  探究2: 化簡: 407[導學案]4.4單位圓的對稱性與誘導公式 407[導學案]4.4單位圓的對稱性與誘導公式(先逐個化簡)

  探究3、利用單位圓求滿足 407[導學案]4.4單位圓的對稱性與誘導公式 的角的集合。

  三、學習小結

  (1)你能說說化任意角的正(余)弦函數為銳角正(余)弦函數的一般思路嗎?

  (2)本節學習涉及到什么數學思想方法?

  (3)我的疑惑有

  【達標檢測】

  1、在單位圓中,角α的終邊與單位圓交于點P(- 407[導學案]4.4單位圓的對稱性與誘導公式 , 407[導學案]4.4單位圓的對稱性與誘導公式 ),

  則sin(-α)= ;cs(α±π)= ;cs(π-α)=

  2.求下列函數值:

  (1)sin( 407[導學案]4.4單位圓的對稱性與誘導公式 )= ; (2) cs210&rd;=

  3、若csα=-1/2,則α的集合S=

關于高一數學教案(精選16篇) 相關內容:
  • 人教版高一數學上冊教案(通用2篇)

    一、教材分析1、教學內容本節課內容教材共分兩課時進行,這是第一課時,該課時主要學習函數的單調性的的概念,依據函數圖象判斷函數的單調性和應用定義證明函數的單調性。...

  • 最新高一數學下冊教案(通用2篇)

    各位評委、各位專家,大家好!今天,我說課的內容是人民教育出版社全日制普通高級中學教科書(必修)《數學》第一章第五節“一元二次不等式解法”。...

  • 高一數學教案總結分享(精選5篇)

    教學目標1、使學生掌握的概念,圖象和性質。(1)能根據定義判斷形如什么樣的函數是,了解對底數的限制條件的合理性,明確的定義域。(2)能在基本性質的指導下,用列表描點法畫出的圖象,能從數形兩方面認識的性質。...

  • 高一數學教學反思(精選7篇)

    下面是第一范文網小編整理的高一數學教學反思600字,希望對大家有所幫助。今天,能有幸在這里和大家1起交流心得,我要非常感謝學校的領導和高1年級的全體老師對我工作的大力支持和幫助,特別要感謝我們高1數學備課組的各位老師,特別是我...

  • 高一數學教學反思600字(通用5篇)

    下面是第一范文網小編整理的高一數學教學反思600字,希望對大家有所幫助。今天,能有幸在這里和大家1起交流心得,我要非常感謝學校的領導和高1年級的全體老師對我工作的大力支持和幫助,特別要感謝我們高1數學備課組的各位老師,特別是我...

  • 高一數學:交集并集說課稿

    各位領導和老師,大家好!我說課的內容是蘇教版必修1第1章第3節第一課時《交集、并集》,下面我想談談我對這節課的教學構想:一、教材分析:與傳統的教材處理不同,本章在學生通過觀察具體集合得到集合的補集的概念后,上升到數學內部,將...

  • 高一數學教學反思總結

    高一數學教師工作總結高一數學教師工作總結,學校安排我上高一三個班數學。高一數學對我來說還是新手上路,但是本學期在學校領導的正確領導下,我不僅圓滿地完成了本學期的教學任務,還在業務水平上有了很大的提高.這半年的教學歷程,是忙碌的...

  • 高一數學寒假作業最大最小值檢測試題

    函數f(x)=9-ax2(a0)在[0,3]上的最大值為( )A.9 B.9(1-a)C.9-a D.9-a2解析:選A.x∈[0,3]時f(x)為減函數,f(x)max=f(0)=9.2.函數y=x+1-x-1的值域為( )A.(-∞,2 ] B.(0,2 ]C.[2,+∞) D.[0,+∞)解析:選B....

  • 高一數學教學反思精選3篇

    下面小編為大家整理了一些關于高一數學教學反思的范例,供大家參考,希望對大家有幫助!高一數學教學反思一走出校園,踏上工作的崗位,我已有了兩年半的教齡。...

  • 2019高一數學寒假作業答案

    題號 1 2 3 4 5 6 7 8 9 10 11 12答案 D D D A D D B C A C B C13. ; 14. 4 ; 15. 0.4; 16. ②③17.(1)∵A中有兩個元素,關于 的方程 有兩個不等的實數根, ,且 ,即所求的范圍是 ,且 ;6分(2)當 時,方程為 ,集合A= ;當 時,若關于...

  • 高一數學教學反思600字

    下面是第一范文網小編整理的高一數學教學反思600字,希望對大家有所幫助。今天,能有幸在這里和大家1起交流心得,我要非常感謝學校的領導和高1年級的全體老師對我工作的大力支持和幫助,特別要感謝我們高1數學備課組的各位老師,特別是我...

  • 高一數學教學反思

    面對新課改,我在教學過程中有幾點深刻體會,如:轉變教學觀念;教學條件難于適應新教材要求;如何處理背景知識、應用材料等課堂延伸材料和課內教學要求之間的矛盾等等。...

  • 人教版高一數學《零點求法與方程及運用》教案

    零點求法與方程及運用一、概念認識:零點是函數 的零點,但不是點,是滿足 的“ ”。二、策略優化:①定義法 ( 與 軸交點),②方程法 (解方程 ),③構造函數法, 三、運用體驗:四、經典訓練:例1: 是 的零點,若 ,則 的值滿足 . 【...

  • 高一數學簡單旋轉體教案

    第一章:立體幾何初步1.1簡單旋轉體一、教學目標1.知識與技能(1)通過實物操作,增強學生的直觀感知。(2)能根據幾何結構特征對空間物體進行分類。(3)會用語言概述球、圓柱、圓錐、圓臺、棱柱、棱錐、棱臺的結構特征。...

  • 高一數學上冊知識點整理:函數的定義域

    定義域(高中函數定義)設a,b是兩個非空的數集,如果按某個確定的對應關系f,使對于集合a中的任意一個數x,在集合b中都有唯一確定的數f(x)和它對應,那么就稱f:a--b為集合a到集合b的一個函數,記作y=f(x),x屬于集合a。...

  • 教案大全
主站蜘蛛池模板: 内丘县| 奉化市| 太仓市| 富蕴县| 禄劝| 渑池县| 高淳县| 汶川县| 巢湖市| 钦州市| 礼泉县| 疏附县| 北京市| 稷山县| 宁国市| 龙口市| 江陵县| 安阳县| 民权县| 卫辉市| 吉林省| 通榆县| 科技| 陵川县| 二手房| 罗城| 定襄县| 新乐市| 博客| 张家界市| 巫山县| 枝江市| 壶关县| 武鸣县| 手机| 淮阳县| 阿拉善盟| 藁城市| 奎屯市| 阳江市| 利辛县|