小學五年級數學《方程的意義》教案(精選17篇)
小學五年級數學《方程的意義》教案 篇1
教學目標:
知識與技能:
(1)初步理解方程的意義,會判斷一個式子是否是方程
(2)會按要求用方程表示出數量關系
過程與方法:經歷方程的認識過程,體驗觀察、比較的學習方法。
情感態度與價值觀:在學習活動中,激發學生的學習興趣,培養學生動手動腦的能力,養成仔細認真的良好學習習慣。
教學重難點
重點:理解方程的含義,會用方程表示簡單的情境中的等量關系。
難點:正確分析題目中的數量關系
教學工具:多媒體設備
教學過程
一、創設情景,揭示課題。
(一)出示實物天平。
師:認識嗎?它在生活中有什么作用?(稱物體的重量、使得左右平衡)
(二)演示:出示三個質量分別20克、30克、50克砝碼,(將未標有重量的一邊朝向學生)
師:它們的重量我們還不知道,如果要分別放在兩個盤上,天平會怎樣呢?
(演示)學生觀察后發現天平平衡(這時,將砝碼標有重量的一邊朝向學生)
提出要求:你能用等式表示天平兩邊物體的質量關系嗎?(學生在本子上寫,指名回答。)
板書:方程的意義
二、新知探究
(一)出示課本例題(見PPT課件)
說明:含有等號的式子叫等式,它表示等號兩邊的結果是相等的。
(板書:含有等號的式子叫等式)
[設計意圖]:讓學生在天平平衡的直觀情境中體會等式,符合學生的認知特點。讓學生用等式表達天平兩邊物體質量的相等關系,從中體會等式的含義。
(二)引導分類,概括方程概念。
1、學生自學(見PPT課件)
要求:
(1)學生在書上獨立填寫,用式子表示天平兩邊的質量關系。
(2)小組同學交流八道算式,最后達成統一認識:
20+30=50 20+X=100 50+X=100 50+2X>100 80<2x 20="" 3x="150">100+50 100+2X>50×3 (根據學生的回答,教師板書這8道算式。)
(3)把這8道算式分成兩類,可以怎樣分,先獨立思考后再小組內交流,要說出理由。 A、想一想你分類的標準是什么? B、把自己分類的情況,寫在紙上?
學生可能會這樣分:
第一種:相等的分一類,不相等的分一類
( 20+30=50 20+X=100 50+X=100 3X=150) (50+2X>100 80<2x 20="">100+50 100+2X>50×3)
第二種:含有未知數的,不含未知數的
(20+X=100 50+X=100 50+2X>100 80<2x 3x="150" 2x="">50×3) ( 20+30=50 100+20>100+50)
2、比較辨析,概括概念
過渡:看來同學們都能按自己的標準對式子進行分類。引導學生理解第一種分法:你為什么這樣分,說說你的想法。
A、教師指著黑板說:像右邊的式子就是我們今天所要學習的方程。(板書:像X+100=250、這樣等式方程)
B、你能說說什么叫方程嗎?
C、學生發言,概括出:“像20+x=100,3×=180……這樣,含有未知數的等式叫做方程”
師(板書)
師提問:你覺得這句話里哪兩個詞比較重要?
生:“含有未知數”“等式”
師:那X+100>100、X+50<100為什么不是方程呢?
生:因為它們不是等式,
師提問:那等式和方程有什么關系呢?生小組里交流。
方程一定是等式,但等式不一定是方程。
師:ⅹ=0,ⅹ=a,ⅹ=a2是方程嗎?
生:是,因為它們既含有未知數,又是等式。
3、舉例方程、理解概念你能例舉出方程嗎?誰能舉的與剛才不一樣嗎?(用字母Y表示、有難度的方程)
生列舉:ⅹ+5=18 6(ⅹ-2)=24 6(ⅹ-2)=24 5ⅹ=30 ⅹ÷4=6 ⅹ+ⅹ+ⅹ+ⅹ=35
(ⅹ+4)÷2=3 ⅹ+y=5等。
師:同學們現在知道方程和等式有什么關系?
生:方程一定是等式,但等式不一定是方程。
師:你能用自己的方式來表示等式和方程的關系嗎?
生思考匯報。
3、鞏固提升
1、“試一試”
(1)觀察左邊的天平圖,說說圖中的是數量關系,列出方程。
(2)觀察右邊的圖,弄清題意,列出方程。
2、練一練
判斷下面的說法是否正確
(1)方程都是等式,但等式不一定是方程。( √ )
(2)含有未知數的式子叫做方程。 ( × )
(3)方程的解和解方程是一回事。 ( × )
(4)X2不可能等于2X。 ( × )
(5)10=4X-8不是方程。 ( × )
(6)等式都是方程。 ( × )
3、練習一
1、像100+x=250這樣的(含有未知數)的(等式)稱為方程
2、討論判斷:下面的式子哪些是方程,哪些不是方程?
8x=0 6x+2 4+2>10
2y÷5=10 n-5m = 15 17-8 = 9
10<3m 6x +3 = 11+2x 4+3z =10
是方程的是:8x=0 2y÷5=10 n-5m = 15 6x +3 = 11+2x 4+3z =10
不是方程的是:6x+2 4+2>10 17-8 = 9 10<3m
4、練習二
1、關系:含有未知數的等式叫方程,那么方程和等式有什么關系?你能用自己的方式來表示等式和方程的關系嗎?
2、用方程表示以下實際問題中的數量關系。
(1)小紅家買來一袋大米共重50千克,吃了3x千克,還剩30千克。 (3x+30=50)
(2)趙華家距離學校240米,她從家到學校走了3x分鐘,每分鐘行60米。 (60 x 3x=240)
(3)小明今年x歲,爸爸40歲,它們倆相差28歲。 (28+x=40)
(4)小芳每天跑skm,她一星期跑了28km. (7s=28)
(5)一罐糖有a顆,平均分給25個小朋友,每人得3顆,正好分完。 (a÷25=3)
課后小結
本節課,我學到了什么是方程:含有未知數的等式叫做方程。我還學到了等式和方程的關系:方程一定是等式,但等式不一定是方程。
板書
方程的意義
等式的概念:含有等號的式子叫等式
方程的概念:“含有未知數的等式叫做方程”
判斷一個式子是不是方程必須滿足的條件:
(1)“含有未知數”
(2)“等式”
注意:
方程一定是等式,但等式不一定是方程。
小學五年級數學《方程的意義》教案 篇2
教材簡析
這部分內容是在學生充分理解了四則運算的意義和會用字母表示數的基礎上進行學習的。教學重難點是結合具體情境理解等式和方程的意義和用方程表示簡單的等量關系。
本信息窗展示的是國家一級保護動物白鰭豚、大熊貓、東北虎的圖片以及相關文字說明。其主要信息有白鰭豚數量的變化情況;野生和人工養殖的大熊貓數量的關系;20__年與20__年人工繁育東北虎數量的比較。根據上述信息,引導學生提出相應問題,進而研究方程的意義。
教學目標
1、結合具體情境理解方程的意義,會用方程表示簡單的等量關系。
2、借助天平讓學生親自參與操作和實驗,在經歷天平由平衡不平衡平衡的動態過程中,加深對方程及等式意義的理解。
3、使學生在學習數學知識的同時,體會數學與生活的密切聯系,喚起學生保護珍稀動物的意識。
教學過程
一、創設情境 激趣導入
談話:同學們,你們喜歡小動物嗎?今天老師帶來了國家一級保護動物的幾幅圖片。(課件出示信息窗1的三幅動物圖片)
我們應該保護這些瀕臨滅絕的珍稀動物。今天這節課,就以這三種動物為話題,來研究其中的數學問題。
【設計意圖】通過介紹國家一級保護動物白鰭豚、大熊貓、東北虎的數量變化情況的情境引入課題,學生比較感興趣,樂于探究,激發了學生的研究興趣。
二、合作探究 獲取新知
1、找出白鰭豚這組資料的等量關系,用字母表示。
(1)提問:我們先來看白鰭豚的這組資料,你獲得了哪些信息?
白鰭豚是國家一級保護動物,瀕臨滅絕。1980年約有400只,比20__年多300只。
(2)根據情境圖所提供的信息你能提出什么問題?引導學生提出:根據1980年約有400只,比20__年多300只這句話寫出等量關系式。
(3)先自己寫一寫,再與小組內的同學交流。
20__年只數 + 300只=1980年只數
1980年只數 - 20__年只數=300只
1980年只數-300只=20__年只數
(4)教師板書20__年只數+300只=1980年只數這個等量關系式,并提問:你能用含有字母的式子表示這個等量關系嗎?先自己想一想,再把你的想法在小組里交流。
學生匯報:如用a表示20__年的白鰭豚只數,上面的等式就可寫成a+300=400。
(5)教師小結:剛才大家用了不同的字母來表示未知數。其實一般情況下,我們用字母x來表示未知數。上面的等式就可寫成x+300=400(板書)。
【設計意圖】由于直接讓學生用含有字母的等式表示出白鰭豚20__年只數和1980只數之間的關系,對于學生來說有一定的難度,因此把這個問題進行細化,減少坡度,學生容易理解掌握。
2、借助天平理解等式的意義。
根據x+300=400:等號左邊求得是哪一年的只數?(1980年的只數)等號右邊是哪一年的只數?(1980年的只數)
像上面這樣表示左右兩邊相等的等式有哪些特點呢?下面,我們借助天平來研究一下。(出示天平)
(1)提問:你對天平有哪些了解?(如果學生對天平的用途、構造及使用方法不了解,教師可以做簡單的介紹。)
(2)天平的左盤放了一個正方體,右盤是100克的砝碼。放正方體的一頭重。
提問:你發現了什么?你能想辦法讓天平平衡嗎?
右盤加上50克的砝碼,天平平衡了。
(3)天平左盤放入10克砝碼,右盤放入20克砝碼。
提問:觀察天平平衡了嗎?如何使它平衡?(左邊再加上10克的砝碼就平衡了。)
提問:根據天平平衡的道理,你能用一個等式表示這個天平左右兩邊的關系嗎?
10+10=20(板書)
(4)天平左盤放入一個20克砝碼和一個小正方體,右盤放入50克砝碼。
談話:小正方體的重量我們不知道,可以用X克來表示。用一個等式表示天平左右兩邊的關系,可以怎樣寫。
20+x=50(板書)
(5)出示兩臺平衡的天平:一臺左盤放兩個50克砝碼,右盤放一個100克砝碼。另一臺左盤放4個x克的小方塊,右盤放一個200克砝碼。
要求:用等式表示出天平左右兩邊的關系。
50+50=100 4x=200(板書)
(6)談話:通過前面的實驗,我們知道天平平衡的現象可以用等式來表示。像前面我們研究的x+300=400借助天平就容易理解了。
【設計意圖】此處這樣設計旨在讓學生借助天平的平衡原理,引導學生通過動手操作和實驗,在經歷天平由平衡不平衡平衡的動態過程中,初步體驗和感受方程的含義。
3、找出大熊貓這組資料的等量關系,再寫出含有未知數x的等式。
(1)提問:繼續看大熊貓的資料,你獲得了哪些信息?
20__年,我國野生大熊貓約有1600只,是人工養殖大熊貓數量的10倍。
(2)你能用含有字母x的等式表示出大熊貓20__年人工養殖的只數與野生的只數的關系嗎?
師生總結:
(3)學生打開教科書57頁,結合圖示進一步理解以上等量關系。
【設計意圖】通過用含有字母x的等式表示情境中數量間的相等關系,引導學生進一步體會方程的意義。
4、找出東北虎這組資料的等量關系,再寫出含有未知數x的等式。
(1)提問:繼續看東北虎的資料,你獲得了哪些信息?
預計到20__年,全國最大的東北虎繁育基地的東北虎數量將達到1000多只,比20__年的3倍還多100只。
(2)提問:根據以上信息你能提出什么問題?
引導學生提出:先用文字表示出東北虎20__年的只數與20__年只數的等量關系,再用含有X的等式表示,最后畫一畫,在天平上表示出這個等式。
(3)先自己寫一寫,再與小組同學交流。
學生匯報:
20__年的只數3+100=20__年的只數
列式為: 3X+100=1000 (板書)
畫圖為:天平的左盤是3個X和一個100,右盤是1000。
提問:這里的X表示什么?(x表示20__年的只數。)
【設計意圖】有了前面合作學習的基礎,第三幅情景圖的學習完全可以放手讓學生自己研究,符合學生的認知學習規律。
5、揭示方程的意義。
(1)提問:剛才我們研究出這么多的等式,像x+300=400 10+10=20 20+x=50 50+50=100 4x=200 10x=1600 3X+100=1000,你能給它們分分類嗎?
引導學生分成兩類:含有字母的是一類,不含字母的是一類。
我們把含有未知數的這類等式叫做方程。(板書)
(2)組織學生討論:X+5是不是方程?2+3=5是不是方程?說明理由。
(3)組織學生交流:判斷是不是方程,你覺得必須符合什么條件?
方程必須含有未知數,還必須是等式。
【設計意圖】通過分類比較、歸納總結,讓學生發現方程的本質特征,進而提高學生比較、分析、判斷、歸納的學習能力。
三、鞏固練習 加強應用
1、出示自主練習1下面哪些式子是方程?讓學生說說判斷的依據是什么。
2、出示自主練習2,看圖列方程。
學生獨立完成,說說自己是怎樣想的。
3、出示自主練習3,填一填。
學生獨立完成。
【設計意圖】練習題的設計是有層次性的,第1題判斷哪些式子是方程,考察了學生對方程意義的理解;第2題重點使學生明確要根據天平平衡時左邊質量=右邊質量的關系列出方程;第3題則結合具體的情景,讓學生寫出等量關系式并列出方程,進一步加深了學生對方程意義的理解。
四、回顧反思 總結提升
談談這節課你有哪些收獲?
總結:這節課我們以國家保護動物為話題,認識了方程,方程可以為我們的解決問題帶來很多方便。
小學五年級數學《方程的意義》教案 篇3
教學內容:蘇教版四年級(第八冊)
教學目標:
(1)使學生理解方程概念,感受方程思想,方程的意義。
(2)經歷從生活情景到方程模型的建構過程。
(3)培養學生觀察、描述、分類、抽象、概括、應用等能力。
教學過程:
一、創設情景,抽象數學模式。
1.出示實物天平。
(實物天平比較小,用屏幕上的天平來模擬實驗。)
2.兩個大蘋果和一個小西瓜,它們的重量我們還不知道,如果要分別放在兩個盤上,猜猜看,天平可能會哪邊重呢?(說明兩邊的重量可能有三種不同的關系。)
用式子描述重量之間的相等關系。
3.一場籃球比賽,紅、藍兩隊打得還挺激烈的,你能來描述兩隊的情況嗎?
用式子表示兩隊比分的關系。
紅隊的教練啊也關注了這個情況,馬上叫了一次暫停,并作了戰術上的調整,一上場的一段時間里,只有紅隊連續得了?分,請你猜一猜,兩隊的情況會怎樣呢?
4.創設四個情景。
(1)每個情景中數量之間有什么關系?
(2)你能用關系式清晰地來描述嗎?
二、引導分類,概括方程概念。
剛才我們對情景的描述得到了很多式子。
200+200=40018<2318+?<2318+?>2318+?=23
280>100120<4?25+?=7022y+720=1050
1.學生嘗試第一次分類。
可能有幾種不同的分法。
(1)看是否是等式。
(2)看是否含有未知數。
……
2.學生嘗試第二次分類。
得到四組不同的式子。
3.描述每一組的特征。
4.引導概括方程概念。
含有未知數的等式叫方程。
三、抓等量關系,體會方程本質。
1.演示動態平衡。有等量關系,能用方程表示
2.出示情景(沒有等量關系,不能用方程表示。)
出示情景120元正好買2個玩具企鵝。(有等量關系,能用方程表示)
3.通過今天這節課,你學到了什么呢?
四、聯系實際,應用與拓展。
1.周老師從無錫到徐州來上課。
(1)線段圖。
(2)我乘火車從無錫站開出,每小時行?千米,7小時到達徐州站。無錫站到徐州站的鐵路長525千米。
(3)到了徐州站,我買了3枝圓珠筆,每枝?元,付出20元,找回2元。
2.情景圖。
本屆奧運會上,中國臺北隊獲得了?枚金牌,中國隊獲得了32枚,日本隊獲得y枚。男孩說:“中國臺北隊金牌數的16倍正好等于中國隊的金牌數。”女孩說:“日本隊的金牌數等于中國臺北隊的8倍。”
3.開放題。
小芳集郵共260張,小明集郵共300張。怎樣才能使兩人的集郵張數一樣多?(用方程表示)
小學五年級數學《方程的意義》教案 篇4
一、教學目標:
1、初步理解方程的意義,會判斷一個式子是不是方程。
2、會按要求用方程表示出數量關系。
3、培養學生觀察、分析、比較、概括及創新的能力。
二、重點:會用方程的意義去判斷一個式子是不是方程。
三、難點:依據多種不同的標準對式子進行不同的分類。
四、教具準備:天平、禮物(100克)、水杯(40克)、多媒體課件
五、教學過程:
1、簡介天平、導入新課:
展示從古埃及到現代的各式天平圖,簡介天平的歷史。
教師稱量100克物體(禮物)的重量,學生觀察。(學生未使用過天平)
2、分組實踐、寫出式子:
學生實踐的任務是:稱量禮物+水杯的重量(共140克)。
同學們能用字母來表示一下水杯的重量嗎?(x,y,m……)
同學們能用含有字母的式子來表示禮物和水杯的總重量嗎?(禮物重量已知100克)(100+x,100+y,100+m……)
第一次試稱量:放一個50克的砝碼,物體的重量和砝碼表示的重量有怎樣的關系?能用式子表示下來嗎?(得到式子100+x<150);
第二次試稱量:取出50克砝碼,放入20克砝碼,物體的重量和砝碼表示的重量有怎樣的關系?(得到式子:100+x>120);
第三次稱量:再放入一個20克的砝碼,得到天平平衡,這時物體的重量和砝碼表示的重量有怎樣的關系?(得到式子:100+x=140)。
3、自主探索、合作交流:
老師這里也有這樣的一些式子:
35+65=100 x-14>72 y+24
5x+32=47 28<16+14 6(a+2)=42
同學們自己先分一分,看有幾種不同的分法,然后以小組為單位,互相交流,并整理。
4、展示結果、得出結論:
以小組為單位實物投影展示分類情況。
其中一組分類情況:35+65=100,x-14>72,y+24,28<16+14分為一組,5x+32=47,6(a+2)=42分為一組。
若學生們未分出這種分類情況,應該肯定分出:x-14>72,y+24,28<16+14為一組,35+65=100,5x+32=47,6(a+2)=42為一組這種分法。此時可以引導:第二組還可以再分類嗎?還可以分為哪兩類?學生就會分得5x+32=47,6(a+2)=42在一組,根據其特點:既是等式,又含有未知數,引出方程的意義:含有未知數的等式是方程。
5、鞏固練習、擴展延伸:
基礎練習:
你能寫出二個方程嗎?
老師這里有一些式子,你們能判斷哪些是方程嗎?并說明理由。
擴展提高:
判斷下面的式子哪些是等式,哪些是方程。同學們發現了什么?
同學們能用圖示來表示一下方程和等式的關系嗎?小組探究。
教師引導:所有方程都是等式,方程是等式的一種(必須含有未知數)。
出示一些簡單數學情境,找出等量關系并列出方程。如:三個球一共20.3元。兩個部分一部分是5.2,另一部分是x,全部是6.5。
6、課堂總結:
同學們今天認識了方程,誰能說一說你對她的了解。讀《小知識》,了解方程的歷史。
小學五年級數學《方程的意義》教案 篇5
教學目標:
1、知識與技能:讓學生理解方程的意義,知道什么是方程的解,什么是解方程,并弄清等式與方程的關系。
2、過程與方法:會判斷什么是方程,會解一步計算的方程,并會檢驗方程的解。
3、情感態度與價值觀:讓學生養成良好的檢查、驗算的習慣,培養學生的分析能力、觀察能力。
教學重點:
理解方程的意義,初步掌握解方程的方法和書寫格式。
教學難點:
方程的解和解方程兩個概念間的聯系及區別,并會應用。
教具準備:
課件、白紙
教學過程:
一、激情導入
1、游戲引出課題:
師:小朋友們,我們來做個游戲吧!老師來說一個詞語,你們反這個詞語反一反說出來,好嗎?看誰反應快!
父母的愛——愛父母;動物的畫——畫動物;
節目的表演——表演節目;生命的感悟——感悟生命;朋友的理解——理解朋友;
朋友的善待——善待朋友;親人的召換——召換親人;兒女的擔憂——擔憂兒女
問題的答——答問題;方程的解——解方程;
引出課題:板書“方程的解解方程”
這節課我們來研究這里面的知識。
二、講解概念“等式、方程”
1、找朋友:
師:剛才我們玩的這個游戲中,找到了好幾對文字上的朋友。
下面,請你來幫這些式子或數字找找朋友,你愿意嗎?
生:愿意。
①、出示課件:同桌之間說一說;指名回答,根據學生回答再次出示課件。
師:這幾對好朋友都有什么特點呢?
生:它們相等。(關鍵引出“相等”)
師:除了把它們用線連起來,還可以用什么方法來表示它們之間是相等的呢?
生:列成一個式子。
學生口答列式,師邊板書:80-20=60
2+0.5=2.5
30÷15=2
30×2=60
師:像這樣用等號連接起來的,表示左右兩邊相等的式子,我們把它們取名叫等式。
師:你能舉例說幾個等式嗎?
②、引出方程:
師:那剩下的幾個它們找不到朋友,心里不太高興,你能把它們也連連線寫成一個等式嗎?
生:能。
學生口答并板書,如:x+3=9
300-b=250
3a=18
師:我們又找到了3對朋友,它們也是等式。那這三個等式跟剛才的四個等式有哪些相同和不同的地方嗎?
生:它們有未知數x、a、b。
師:像這樣含有未知數的等式,我們給它取名叫方程。
你能舉例說幾個方程嗎?
2、等式與方程的關系:
師:那等式和方程之間到底是什么關系呢?
你能用一種直觀形象的方法來表示它們之間的關系嗎?
你可以在紙上寫一寫、畫一畫,用自己喜歡的方式來表示,四人小組討論一下。
指名回答。出示課件并板書。
師小結:方程屬于等式,里面含有未知數,是一種特殊的等式,但等式不一定是方程。
3、判斷練習:
師:我們有了方程和等式的知識,當遇到一個式子,要判斷它是不是方程時,應該怎么想?
生:先看它是不是等式,如果是等式,再看它有沒有未知數。如果它有未知數,就是方程;如果沒有未知數,就不是方程,而是一般的等式。
師小結:一必須是等式,二必須含有未知數。
師出示課件中的練習:下列哪些是方程,哪些不是方程?
①、下面哪些是方程,哪些不是方程:
35-b=1284÷12=7
5x-32200
100+x100
學生觀察后分組討論:
匯報時用式子表示:
100+x >200
100+x100
4.現在我給右盤再加一個100g的砝碼,仔細觀察,現在天平平衡了嗎?得到數學式子:100+x>200
師:我給右盤再增加一個100g的砝碼,你又發現了什么?得到數學式子:100+x72 15÷b=3
5x+32=47 28x分。
師:兩個班最后的比分是幾比幾?(學生回答,教師板書:x+1∶4)
師:哪個班贏了?你能用一個數學式子來表示嗎?
(學生回答:x+1>4,x+1<4,x+1=4;并注意提問式子的意義)
師:其實在我們的生活中有許多現象是可以用數學式子來表示的。今天我們就來一起學習一個新的數學知識。(教師板書課題:方程的意義)
設計意圖:用學生經歷的真實活動為情境,充分調動學生的學習積極性,使學生切實感受到數學來源于生活,服務于生活。同時通過熟悉情境的創設,讓學生更易理解,更深刻地感受“等”與“不等”,為后面理解方程的意義作鋪墊。
情境呈現,抽象模型
1、自學方程的意義,初步感悟新知。(課件出示教材62頁情境圖)
自學提示:
(1)理解教材62頁每幅圖畫及對應式子的含義。
(2)標示出你認為重要的內容。
(3)思考:方程應該具備哪幾個條件?
(4)結合你對方程概念的理解,完成教材63頁“做一做”1題。
2、合作學習。
(1)你能自己寫幾個方程嗎?小組內互相訂正。
(2)組內交流收獲。在小組內互相說一說:你學到了什么?
由組長帶領組內成員集體訂正教材63頁“做一做”1題的答案,說清理由,并將小組內認為不是方程的算式記錄在小黑板上。
(3)全班交流。教師展示學生的完成情況,先把答案相同的進行分類,再從答案最少的一塊著手分析。遇到問題,學生之間互相解答,加深對方程的意義的理解。
(此環節教師要隨機應變,注意提問學生“方程應該具備哪幾個條件”。如果出現了對方程理解有困難的同學,再次為學生講解)
預設:
①全班同學的答案一致,全對。
②一部分小組全對,一部分小組有錯誤。
這時教師可以先找有錯誤的一個小組到黑板上匯報講解。講解時隨時和下面的同學互動交流,在學生的爭論中,教師適時引導、提問,指導學生判斷正誤的方法。
3、整理分類,加深對方程意義的理解。
(1)組織學生分組活動,根據黑板上的算式特點進行分類。
(2)交流匯報,說出分類依據。教師板書。
4、獨立完成教材63頁“做一做”2題,匯報,集體訂正。
5、引導學生獨立完成教材66頁1題,集體訂正,并加以補充:判斷0=5z-15是不是方程。
小學五年級數學《方程的意義》教案 篇6
這一次學校開展了活動,在活動中我們集體備課選定了《方程的意義》一課作為研討課。這課的難點是區分“等式”和“方程”,為能突破這一難點我們精心設計了這節課的教學過程。
新課前先是出示了口算卡:
接著在方程意義教學過程中為了使學生能明白什么是相等關系,我們先用了一把1米長粗細均勻的直尺橫放在手指上,通過這一簡單的小游戲使學生明白什么是平衡和不平衡,平衡的情況是當左右兩邊的重量相等時(食指位天直尺中央),緊接著引入了天平的演示,在天平的左右兩邊分邊放置20+30的兩只正方體、50的砝碼,并根據平衡關系列出了一個等式,20+30=50;接著把其中一個30只轉換了一個方向,但是30的標記是一個“?”天平仍是平衡狀態。得出另一個等式20+?=50,標有?的再轉換一個方向后上面標的是x,天平仍保持平衡狀態,由此又可以寫出一個等式20+x=50。整個過程注重引導學生通過演示、觀察、思考、比較、概括等一系列活動,由淺入深,分層推進,逐步得出“等式”——“含有未知數的等式”——“方程”。
雖然整個教學任務好象是完成了。但從學生的練習中我們發現還有一部分學生對“等式”和“方程”的關系還是沒有真正弄清,例好在練習題中有一道討論題:“方程都是等式,而等式不一定是方程。”這句話對嗎?(答案是對的) 但是通過小組同學的合作學習和爭論,答案不一。雖然做錯的同學最后被做對的同學說服了,但這也說明了“等式”和“方程”的教學過程中還存在問題。其實我們是忽視了“等式”和“方程”的直接對比
我們的口算題引入本來是為這節課的學習進行鋪墊,但在第一次上課時,口算題我們做完后沒有再回過頭來再充分利用。課后經過大家的評課和科培中心老帥的指點,看起來是很簡單的幾道口算題,其中隱藏著等式和方程的關系。第二節課中我們通過改進,在講完“等式”和“方程”后又回到口算卡,將口算卡的題通過變化 ——只是等式| ,——既是等式又是方程,這樣進行對比使學生對“等式”和“方程”的關系就弄得明明白白了。
《方程的意義》教學反思
《方程的意義》這是一塊嶄新的知識點,是在學生熟悉了常見的數量關系,能夠用字母表示數的基礎上教學,但理解起來有一定的難度。數學教學過程,首先應該是一個讓學生獲得豐富情感體驗的過程。要讓學生樂學、好學,讓學生在教學過程中獲得積極的情感體驗,下面就結合我所執教的<<方程的意義>>這節課,談談我在教學中的做法和看法。
回顧我的教學,我認為有如下幾個特點。
一、設置情景引導,促進學生的自主學習
在執教,《方程的意義》一課時通過天平的演示: 認識天平,同學們說天平的作用、用法。在這個環節要充分發揮低視的動手能力,但要注意對學困生的引導,在這個方面應該給學困生更多的機會去接觸天平,起碼讓他們對天平建立起一個初步的認識。
二、合作交流,總結概括
通過對天平的觀察得出等式的概念,接著應讓學生自己獨立思考。通過比較等式與方程,以及不等式與方程的不同,得出方程的概念,體現學生自主學習的能力,而不應該替學生很快的說出答案,在將出方程的概念后,應該讓學生通過變式訓練明白不僅x可以表示未知數,其他的字母都可表示未知數。在此教學過程中,教師應充當一個導游的角色,站在知識的岔路口,啟發誘導學生發現知識,充分發揮學生的學習潛能,將有一定難度的問題放到小組中,采用合作交流的方式加以解決,逐步的引導學生對問題的思考和解決向縱深發展,有利于培養學生的傾聽習慣和合作意識。
三、回歸生活,體會方程
在建立方程的意義以后,設計了根據情境圖寫出相應的方程,并在最后引入生活實例,從中找出不同的方程。這一過程學生在生活實際中尋找等量關系列方程,進一步體會方程的意義,加深了對方程概念的理解,同時也為以后運用方程知識解決實際問題打下基礎。
從學生已有的知識儲備來看,他們會用含有字母的式子表示數量,大多數學生知道等式并能舉例,向學生提供表示天平左右兩邊平衡的問題情境,大部分學生運用算術方法列式。但是,學生已有的解決數學問題的算術法解題思路對列方程會造成一定的干擾。對于利用天平解決實際問題較感興趣,但是,要求學生把看到的生活情境轉化成用數學語言、用關系時表示時可能存在困難,對于從各種具體情境中尋找發現等量關系并用數學的語言表達則表現出需要老師引導和同伴互助,需要將獨立思考與合作交流相結合。
方程的意義教學反思
在教學設計時,我把“方程的意義”作為教學的重點,方程意義的教學目標定位是,不僅僅是讓學生了解方程的概念,能指出哪些是方程;更多思考的是學生對方程后繼的學習和發展,注重知識的滲透.
課堂上讓學生借助于天平平衡與不平衡的現象列出表示等與不等關系的式子,為進一步認識等式、不等式提供了觀察的感性材料,然后引導學生對式子分類,建立等式概念,并舉出新的生活實例進行強化.最后引導學生分析、判斷,明確方程與等式的聯系與區別,深化方程的概念.
本節課從課堂整體來看還可以,有大部分學生的思維還較清晰、會說;可還有部分學生不敢說,或者是不知如何表述,或者是表述的不準確,我想問題的關鍵是學生的課堂思維過程的訓練有待加強,數學課堂也應該重視學生“說”的訓練,在說的過程中激活學生的思維,讓學生在新課程的指引下學會自主探索,學得主動,學得投入。
小學五年級數學《方程的意義》教案 篇7
教學內容:教科書第1~2頁,例1、例2、試一試、練一練,練習一第1~3題。
教學目標:
1、認識等式,以具體的實例引導學生通過自主的探索活動,初步理解等式的特征。
2、通過觀察比較,使學生認識到含有未知數的等式是方程,感受等式與方程的聯系與區別,體會方程是特殊的等式。
教學重點:理解等式的性質,理解方程的意義。
教學難點:利用等式性質和方程的意義列出方程。
教學準備:多媒體課件
教學過程:
一、情景引入
1、出示天平。
知道這是什么嗎?你知道它是按照什么原理制造的嗎?
說說你的想法。
如果天平左邊的物體重50克,右邊的放多少克才能保持天平的平衡的呢?
二、教學新課
1、教學例1。
(1)出示例1圖。
你會用等式表示天平兩邊物體的質量關系嗎?把它寫出來。
50+50=100 (板書)
說說你是怎樣想的?
(2)指出等式的左邊,等式的右邊等概念。
等式有什么特征?(等式的左邊和右邊結果相等;等式用等號連接)
能說說什么樣的式子叫做等式嗎?(左右兩邊相等的式子叫做等式)
2、教學例2。
(1)出示例2圖。
天平往哪一邊下垂說明什么?(哪一邊物體的質量多)
你能用式子表示天平兩邊物體的質量關系嗎?
學生獨立完成填寫,集體匯報。
板書:x+50>100 x+50=150
X+50100 x+50=150
方程 X+50
小學五年級數學《方程的意義》教案 篇8
【教學目標:】
1、使學生初步認識方程的意義,知道等式和方程之間的關系,并能進行辨析。
2、使學生會用方程表示簡單情境中的等量關系,培養學生的動手操作能力、觀察能力、分析能力和解決實際問題的能力。
【教學重點:】方程的意義。
【教學難點:】正確區分等式和方程這組概念。
【教學實錄:】
一、創設情景,感知等式
1、出示天平:
師:認識嗎?它在生活中有什么用?(稱物體的重量、使得左右平衡)
生:天平是用來稱物體的重量的。
2、雞蛋天平圖
a、演示:平衡
在左放兩個雞蛋,右放上100克砝碼,天平平衡。
師:天平這時怎么呢?說明了什么?
生:天平平衡了,說明這兩個雞蛋重100克。
師:你能用一個數學式子來表示嗎?
生:50+50=100(板書:50 + 50 = 100或 50 × 2 = 90)
師:誰來給這種式子起個名字嗎?
生:可以叫等式。(板書:等式)
b、演示:天平不平衡
師:左邊拿走一個雞蛋,天平會怎樣?說明了什么?
生:天平就不平衡了,說明左右兩邊不相等。
師:能不能也用一個數學式子表示呢?
生:50<100(板書)
師:這是等式嗎?
生:不是等式。
【反思】學生先要觀察天平的現象,再獨立的思考該如何解答?這樣的一個思考過程是十分必要的。因為,隨后出現的式子70 + x=9070 + x < 9070 + x > 90
等都是在此基礎上建立來的。這樣的教學設計,一方面是為了使知識之間的聯系更緊密,以便于后續教學活動的進行;另一方面也可以借此來培養學生獨立思考的能力。)
3、飲料,糖果天平圖
a、演示:左邊70克糖果,右邊90克飲料,天平向右傾斜
師:天平怎么了?說明什么?
生:飲料比糖果重。
師:誰來用式子表示?
生:70 < 90 (板書)
b、如果在天平的左邊加上x克的牙簽。
師:這時天平可能會發生什么情況?
生一一說出“3種情況”
師:你能分別用數學的式子表示嗎?
根據學生回答板書: 70 + x=9070 + x < 9070 + x > 90
師:這幾個式子同上面的式子比,有什么不同?
生:它們含有未知數。
4、教材中的杯、水、砝碼天平圖。
a、演示:左邊空杯,右邊100克砝碼,天平平衡。
師:通過你的觀察,你知道了什么?
生:我知道了一個空杯的重量是100克。
b、師:往空杯中加入水,天平會怎樣?
生:天平會向左傾斜。
師:有其他可能嗎?
生:不會有其他可能。
師:可以用y表示倒入的水,還可以用其他字母表示嗎?你能用一個式子表示這個現象嗎?
生:可以用其他的字母。
生:100+y>100(板書)
c、演示;往天平的右邊加了100克和50克的砝碼,天平再次平衡
師:能不能又用一個式子表示此時的現象呢?
生:100+y=250(板書)
師:到底倒入的水有多少克,你能知道嗎?
生:水有150克,因為250-100=150克
二、主動探究方程的意義
1、分組嘗試、引導分類
過渡:剛才我們通過觀察、思考得出了這么多的式子,你能按照一定的標準將它們分分類嗎?把你思考的在小組中交流,然后派代表全班交流。(教師指著黑板上的各種式子說)
50+50=100
50<100
70 < 90
70 + x=90
100+y>100
100+y=250
70 + x < 90
70 + x > 90
2、提供給學生觀察的時間、嘗試分類
3、反饋
(注意:讓學生說說這樣分的理由是什么?多指名幾位學生說)
第一次分類:按照等式不等式分
第二次分類:按既含有字母有是等式分
a、讓學生說自己是怎么分的?
b、如果學生按照多種標準分時,指出:“分類一次時只能是一個標準”。
c、引導學生分
師:那么按照是不是等式分應該怎么分?
d、第二次分類:
師:你能把這些等式再分分類嗎?
4、 概括概念
過渡:看來同學們都能按自己的標準對式子進行分類。
(老師把黑板上不是方程的式子擦掉)
a、教師指著黑板說:那么,像這樣的等式我們叫做方程(注意語氣語速)。
(板書: 方程)
b、你能說說什么叫方程嗎?
c、學生發言,概括出:“含有字母的等式叫做方程”(板書)
……
【反思】設計分類有兩個目的:第一,通過學生找到一定的分類標準,自主對式子進行比較,辨別,明確什么是方程。第二,明確“分”的標準雖然不同,但通過連續兩次“分”,最后的結果是一致的。在分類過程中,我的打算本是把學生的兩種分法的結果一一抄寫在黑板上,可由于黑板有些小,我就圖簡便,第一種分法我就在原算式上調整了位置,沒重抄。當學生說到第二種分法的結果時,我們的原始算式沒有了,給人一種將第一種分法的結果又再分的錯覺,聽課的老師有這種錯覺,我想學生肯定有的沒把兩種分法弄清楚。
三、拓展練習、鞏固概念
1、判斷:下面的式子哪些是方程,哪些不是方程?(書上練習)
8x=06 x+24+2>102 y÷5=10 n-5m = 15
17-8 = 9 10<3m 6x +3 = 11+2x 4+3z =10
提問:在判斷的過程中,你有哪些新的體會以下幾點:
學生可能會說:
(未知數)也可以在等號的右邊;
未知數可以用x、y等多個字母表示;
一個等式中可以含有多個未知數;
小結:看來我們要判斷是否是方程,必須要具備什么條件。
師:認識了方程,以前見過嗎?
師;其實一年級就見過。(生奇怪)比如8+□=10
學生恍然大悟,原來方程離我們并不遙遠。
2、討論、辨析概念
a、判斷,下面的說法對嗎?
所有的方程都是等式。
所有的等式都是方程。
b、你能用一個圖(或表)來形象地反映出等式和方程的關系嗎?
……
小學五年級數學《方程的意義》教案 篇9
本文是第一范文網小編為大家整理的五年級數學《方程的意義》教學反思,希望對大家有所幫助。
《方程的意義》這節課與學生的生活有密切聯系,通過本節課的學習,要使學生經歷從實際問題中總結概括出數學概念的過程。讓學生初步了解方程的意義,理解方程的概念,感受方程思想。使學生經歷從生活情境到方程概念的建立過程,培養學生觀察、猜想、驗證、分類、抽象、概括、應用等能力。通過自主探究,合作交流等數學活動,激發學生的興趣,所以我在教學設計的過程中十分重視學生原有的知識基礎,用直觀手法向抽象過渡,用遞進形式層層推進,讓學生經歷一個知識形成的過程,并盡可能讓他們用語言表達描述出自己對學習過程中的理解,最后形成新的知識脈絡。下面就結合這節課,談談我在教學中的做法和看法。
一、復習導入,激趣揭題
該環節主要復習與新知識有間接聯系的舊知識,為學習新知識鋪墊搭橋,以舊引新,方程是表達實際問題數量關系的一種數學模型,是在學生熟悉了常見的數量關系,能夠用字母表示數的基礎上教學的,因此開課伊始我結合與學生有關的一些生活現象出示了一組題,要求學生用含有字母的式子表示出來。這些題的出現即能讓學生復習鞏固以前所學的知識也能讓學生體會到我們生活中有很多現象都能用式子表示出來,激起學生的學習興趣,引出這節課的學習內容,這樣的開課很實際,很干脆,也很有用。
二、實踐操作,建立方程模型
1.用天平創設情境直觀形象,有助學生理解式子的意思
等式是一個數學概念。如果離開現實背景出現都是已知數組成的等式,雖然可以通過計算體會相等,但枯躁乏味,學生不會感興趣。如果離開現實情境出現含有未知數的等式,學生很難體會等式的具體含義。天平是計量物體質量的工具,但它也可以通過平衡或者不平衡判斷出兩個物體的質量是否相等,天平圖創設情境,利用鮮明的直觀形象寫出表示相等的式子和表示不相等的式子,可以幫助學生理解式子的意思,也充分利用了教材的主題圖。
2、自主操作,提高能力,激發興趣
在探究方程的意義時我特意給學生提供操作天平平衡的不同材料,讓學生分組實踐,通過操作、觀察天平的狀態得到許多不同的式子,由于材料不同,每個組所得的式子也不同,有的全是已知數的式子,有的是含有未知數的式子,多種多樣的式子激起學生的探究欲望激發學生觀察興趣。
三、實際運用,升華提高
在練習設計中由易到難,由淺入深,使學生的思維不斷發展,使學生對于方程意義的理解更為深刻,特別使讓學生自由創作方程這一練習題,既讓學生應用了知識又培養了學生的創新思維。
本課時教學設計,改變了傳統學習方式,利用課本的靜態資源通過現代化教學手段,把數學情景動態化,大大激發了學生的學習興趣,充分體現了以學生為主,讓學生獨立思考,不斷歸納,把學生從被動地接受知識轉為自己探究,為學生提供了自主探究,合作交流的空間。在學習中體會到了學習數學的樂趣,在獲取知識的同時,情感態度,能力等方面都得到發展。當然這節課還存在一些問題,比如對等式與方程的關系突出得不夠,讀學生“說”的訓練不夠,應該給學生更多的表述的機會。
小學五年級數學《方程的意義》教案 篇10
教學內容:人教版《義務教育課程標準實驗教科書·數學》五年級上冊第四單元第53~54頁“方程的意義”。
教學目標:
1.借助生活情景理解方程的意義——用含有未知數的等式表示兩件事情是等價的。
2.經歷從生活情景到方程模型的建構過程,感受方程思想的核心之一,即建模。
3.培養學生觀察、描述、分類、抽象、概括、應用等能力。
教學重點:準確從生活情景中提煉方程模型,然后用含有未知數的等式來表達,理解方程的意義。
教學難點:理解方程的意義,即用數學符號表示兩件事情是等價的。
教學準備:flash課件,天平,不同質量的食物若干。
教學過程:
一、游戲引入,激發興趣
師:今天,我們先來玩個游戲!這兒有13張撲克牌,分別代表1—13,你們從中任抽一張,不讓老師看到,老師也能猜到你抽到的這張撲克牌是什么,誰愿意試試?
生:任抽一張(不讓老師看見牌面)。
師:請將撲克牌代表的數先乘2,再加上3,再把所得的和乘5,最后減去25,看看結果是多少?
生算后報出結果,教師利用列方程快速求出結果,報出牌面的數字。待學生無限驚訝時,引導學生猜想:“老師怎么能這么快知道同學們手中的牌呢?”
生:你一定是倒推的,將得數加上25,除以5,減去3,再除以2。
師:你知道其中的秘密了,真了不起!老師能這么快知道你們抽的是什么牌,是因為數學王國的一位新朋友幫了我的忙,今天我們就能認識它。
[評析:用游戲的方式激起學生對方程的好奇心,激發學習本課的興趣。本課最后一環節的“游戲揭密”不僅溝通了數學活動之間的聯系,更使學生初步體會到方程作為一種數學模型在解決實際問題中的價值。]
二、情景呈現,抽象模型
1.師:老師這有一臺簡易天平。關于天平.你們都了解些什么?
生1:天平可以稱物體的質量;
生2:當天平兩邊物體的質量一樣時,天平就平衡了。
師:(借助天平邊演示邊問)在天平的左盤放上兩袋100克的食物,右盤放上一個200克的砝碼,天平怎么樣了?
生:平衡了。
師:會不會用一個數學式子來表示天平現在的狀況?
生:100+100=200。
師:這么個簡單的式子,能表示天平現在的狀況?
生:能。
師:左邊表示的是什么,右邊表示的是什么?
生:左邊表示食物的質量,右邊表示砝碼的質量。
師:(指著算式說)正因為食物的質量等于砝碼的質量,所以天平平衡了。
2.師:將左盤的食物換成兩袋30克的食物,天平還平衡了嗎?
生:不平衡。
師:為什么?
生:因為兩盤物體質量不相等。
師:誰能用個式子表示天平現在這種不平衡?
生:30+30<200。
3.師:是呀,因為兩盤物體質量不相,所以天平就不平衡,那么,怎樣才能使它平衡呢?
生1:可以在左盤加上一些物體。
生2:也可以換一個砝碼。
師:你們這樣做的目的都是為了什么?
生:使左右兩盤物體的質量相等。
師:這兒有一袋小豆,它的質量不知道,我們可以怎么表示?
生:可以用字母表示、可以用x表示。
師將這袋x克的小豆加在輕的一端,讓學生觀察天平的狀態并用式子表示。
生:60+x=200。
師:60+x表示的是什么?200表示的是什么?
生:60+x表示的是左盤物體的質量,200表示仍然是砝碼的質量。
4.師出示一盒牛奶,告訴學生它的質量是275克,讓學生猜想如果將它放在天平的左盤里會怎樣?
提示學生用式子表示(275>200),然后請一位同學將盒內的牛奶喝掉一些。
師:這盒學生奶被喝掉了多少克?
生:不知道x克,a克……
師:剩下的牛奶的質量可以怎么表示?
生:(275-x)克。
師:如果將剩下的牛奶放回天平左盤,天平可能會出現什么情況,又可以用什么式子表示呢?
生思維活躍,猜想出以下三種情況:可能平衡,用275-x=200表示;也可能是275-x>200,也就是說剩下的牛奶還是比砝碼重。還可能是剩下的牛奶輕些,可以用275-x<200來表示。
師:同學們都理解了這些式子兩邊的含義,并用正確的符號連接起來。
三、引導分類,構建概念
1.師:剛才我們用了這么多的式子來描述天平的平衡情況。你能按天平的平衡情況將這些式子分分類嗎?
(生討論,師巡視)
組1:我們是按是否含有未知數來分的,將60+x =200,275-x=200,275-x=200,275-x<200分為一組,其余的分為一組。
組2:我們組將平衡的分為一類,大于200的分為一類,小于200的分為一類。
組3:我們和組2分的差不多,只是將平衡的分為一類,將不平衡的分為一類。
師拖放課件上的式子,按學生的匯報將不平衡的歸到一起。
師:(指著含有等于號的式子)像這樣的含有等于號的式子,數學上稱之為等式。(板書:等式)其它的式子我們都稱之為不等式。
[評析:等式是一個冰冷的數學概念,由于兒童的思維特點,對等式的理解需要借助具體的現實情境,如天平稱物的狀態。而此處教師的處理沒有溝通學生具體情境與抽象概念之間的聯系,學生難于體會等式的本質含義。]
師:觀察這些等式,它們有什么不同的地方?
生:后兩個含有字母。
師:這些字母表示——未知數。(板書:含有未知數)像這樣的含有未知數的等式,我們稱之為方程。今天這節課我們就是研究方程的意義。
[評析:從實際情景中列出等式和不等式,讓學生用數學的符號把要說的話(兩件事情等價)表達出來,使學生經歷用數學的簡潔方式表達生活現象的過程,不僅使學生初步感知了方程的表現形式,更滲透了建模思想。]
師:能說說什么叫方程?(生齊讀概念)
師:聯系剛才的操作,說說你對方程的理解。
生1:方程就是表示平衡。
生2:方程表示兩邊相等。
生3:方程還要含有未知數。
生4:方程是等式。
師:那么,方程和等式之間有什么關系呢?
生1:等式包含了方程。
生2:方程一定是等式。
師:如果畫這樣一示等式,那方程應該畫在哪里?
生:應該畫在里面。
(師完善韋恩圖。)程的主要特征之一,明晰方程和等式之間的關系是本課的教學目標之一。如果教師能先讓學生用自己喜歡的方式來表達等式與方程之間的關系,再通過集體探究得出一個大家一直認同的關系圖,不但會使學生的思維出于一種激活狀態,而且有利于學生在區分等式與方程的同時,提升思維能力。]
四、形式判斷,加深認識
1.師:大家對方程有了一定的理解,在剛才的情景中,我們列出了兩個方程。(指著黑板上已有的兩個方程),下面,大家根據自己對方程的理解任意寫幾個方程吧!
(生在練習紙上寫,叫部分學生在黑板上寫。)
2.師:同桌間互相檢查一下,看大家列的都是方程嗎?再看黑板上這幾位同學寫的。都是方程嗎?
學生寫的方程沒有錯誤的,還出現了用不同字母表示未知數的方程,師引導學生一一進行判斷。
師:大頭兒子也寫了兩個式子,可是不小心被墨水給弄臟了,猜猜他原來列的是不是方程?
生:第一個一定是方程,第二個則不一 定。
師:同意嗎?為什么?
生;從第一個沒有被墨水弄臟的地方就可以看出它是等式并且含有未知數了,所以它一定是方程;而第二個則要看墨跡處的情況而定,如果墨跡處是未知數,則是方程,如果是6則只是一個等式。
師:(鼓掌)說得太好了!大家都明白了嗎?
生:明白了。
[評析:此環節是本課的一個亮點。教師讓學生根據自己對方程的理解任意寫幾個方程,不僅為檢驗學生對方程概念的理解,更為學生提供了一個開放的思考空間。學生不僅展示了學習的結果,感知了方程的多樣性.同時在對自己所列方程的一一判斷中.加深了對方程意義本質的理解。判斷題的設置。讓抽象的方程定義融入一種生動的思辨情境中,使學生在對“被墨跡掩蓋了的式子是不是方程”的合理解釋中,形成對方程外部特征的深刻印象。]
3.師:看來,大家對方程已經有了非常深刻的認識。方程的歷史已經非常悠久了,我們一起去了解一下吧!(課件出示——方程“史話”) 方程歷史的第一頁是由古代埃及人和巴比倫人揭開的。據現存世界上最早的數學文獻——埃及的林特草卷記載,早在三千六百多年前,埃及人就會用方程解決數學問題了。
中國人對方程的研究也有著悠久的歷史。大約兩千年前成書的《九章算術》中,就有專門以“方程”命名的一章,記載了用一組方程解決實際問題的方法。這不但是我國古代數學中的偉大成就,而且是世界數學史上一份非常寶貴的遺產。
在很長時期內,方程沒有專門的表達形式,而是使用一般的語言文字來敘述它們。一直到三百年前,法國的數學家笛卡爾第一個提倡用x、y、z等字母代表未知數,才形成了現在的方程。
師:隨著數學的研究范圍不斷擴充,方程的作用也越來越重要。方程的類型也由簡單到復雜不斷地發展。但是,無論類型如何變化,各種各樣的方程都是含有未知數的等式。很多以前用算術方法解起來很難的問題,用方程解起來就輕而易舉呢。
『評析:精美課件所展示的一段簡短的“方程史話”,既讓學生了解到一種新知識產生與發展的過程,又溝通了數學與人類文明與進步的聯系,凸現了數學的文化特征,學生的學習視野也由此而變得開闊起來。]
五、聯系實際,鞏固應用
1.師:下面咱們來玩個小游戲!這是用電腦模擬的天平,請把天平下方的材料拖放到天平上,要求大家看到天平的狀況就能列出一個方程來。
由于電腦操作的原因,學生嘗試多次,天平未出現平衡。
師:你覺得要讓大家能列出方程來,關鍵要解決什么問題。
生:讓天平平衡。
師:別著急,再試試。
生操作后出現情況①:左盤兩個x克,一個20克,右盤一個50克。情況②:左盤兩個x克,一個y克,一個50克,右盤z克。
師:能列出方程嗎?
師:你們列出的方程是?(2x+20=50,x+y+50=z)
當學生列出方程后,師啟發學生講清等式的左邊和右邊分別表示什么?
生:分別表示兩邊物體的質量。
師:大家看,這個方程兩邊都含有未知數,這么復雜的方程都能列出來,大家真了不起。
2.師:其實,不單是天平的平衡問題,我們研究許多數學問題時,經常會發現其中的未知數不是孤立的,它們與一些已知數之間有相等的關系,可以列出方程。
師:你能根據下面這兩幅圖中的數量關系快速列出方程嗎?
生匯報:3x=36。
師:你是怎么想的?
生.3x表示的是三盒彩筆的總枝數,36也是表示的三盒彩筆的總枝數,所以我那樣列。
師:有道理!第二幅圖呢?
生l:60+x=200。
師:說說你的想法1 60+x表示的是什么,200表示的是什么?
生:60+x表示的是這條線段的長度,200也是表示這條線段的長度。
師:這個方程剛才出現過,(指黑板上已經列出的方程)同樣一個方程.在這里表示的是長度相等,剛才表示的是什么?
生:質量相等。
師:你們能不能再舉個例子,讓大家也能列出一個這樣的方程來呢?
生:李師傅一天加工60個零件,王師傅一天加工x個零件,他們一天共加工200個零件。
師:60+x=200能表示這位同學所說問題中的數量關系嗎?
生:能!
師:這個方程又是表示什么相等?
生:李師傅一天加t的零件個數加上王師傅一天加工的零件個數等于他們一天加工的零件總個數。
師:看來,只要是涉及未知數的等量關系,都可以用方程表示。
[評析:方程的意義不在于方程概念本身,而在于方程的思想——用已知量的觀點處理未知量,尋找等量關系,構造一種模型。教師力求讓學生在同一種數學情境中尋找不同的等量關系,用相同的方程解釋不同的數學情境,理解方程在右兩邊所表示的量的具體含義以及它們的相互關系,使學生在一種思辨的狀態中體驗到方程是表達等量關系的數學模型。]
3.師:大頭兒子和小頭爸爸在說些什么,我們一起去聽聽!
(播放課件)
師:你能從小頭爸爸和大頭兒子談話中,選取一些信息列出方程嗎?
(師收集幾張練習紙,投影展示。)
師:我們來看這位同學的,列出了37-a=28這樣一個方程,請這位同學說說你選擇了哪幾條信息,為什么這樣列?
生:我根據爸爸今年37歲,兒子今年a歲,他們倆相差28歲列出的這個方程。爸爸的年齡減去兒子的年齡,就等于他們倆相差的年齡。
生:我想,a+28表示大頭兒子的年齡加上28歲,也就是小頭爸爸的年齡,而爸爸的年齡是37歲。
師:這里還有一位同學列的是a+28=37,37-28=a怎么想的?
生2:我是把爸爸的年齡減去他們相差的年齡,就是兒子的年齡了。
師:有道理!大家看看,這三個方程都是根據這一組信息列出的,像37—28=a這樣的方程,和我們以前學的算術方法的思路是一樣的,未知數沒有參與運算,今后我們用方程解決實際問題時,一般不列這樣的方程。
師:再看這位同學列出9-x=3這樣一個方程。能說說你的想嗎?
生1:9-x表示大頭兒子給了爸爸x張撲克后自己有多少張,3就是爸爸的張數。
生2:我不同意,兒子給了爸爸x張后,爸爸應該增加了x張,不止3張了。我列的是9-x=3+x。
師:9-和3似分別表示的是兒子給了爸爸x張后兩人撲克牌的張數,這時他們的張數才是一樣多的。
師:還記得課開始的時候老師和你們玩的游戲嗎?同學們第一次抽了一張牌。按照規定的方法計算后得到60,老師就是根據你們的計算過程和結果列出了一個方程(2x+3)×5-25---60,然后解出這個方程,從而快速判斷出你們抽的牌是什么。至于怎么解方程,正是我們今后要研究的內容,相信大家有了今天的基礎,大家一定會越來越喜歡“方程”這位朋友的!
[評析:列方程解決實際問題的關鍵就是尋找等量關系,這是教學的重點。也是學生學習的難點,在教學“方程的意義”時,利用具體的生活情境顯示一些等量信息,其目的并非求得學生列出正確的方程,而是讓學生體會什么是實際問題的等量關系,滲透尋找和利用等量關系的思想方法,為學生的后續學習作適當地鋪墊。]
[總評:
方程是實際問題數量關系的一種模型,列方程解決問題是一種解決問題的思想方法。方程的概念、方程的思想已作為“代數”部分的重要內容出現在小學數學教學中。
“方程的意義”是代數知識的起始性知識,也是學生從算術思維飛躍到代數思維分析現實生活中數學問題數量關系的重要栽體。方程是用等式表示數量關系,它由已知數與未知數共同組成,表達相等關系是現象,揭示事件中最主要的數量關系是本質特征。教學“方程的意義”,并非讓學生簡單地認識方程的外形特征——“含有未知數的等式”,而是要讓學生體會方程的本質特征。
兒童數概念的形成,必須經歷一個數學化的過程,因此揭示“方程的意義”,必須借助于學生的日常生活經驗,利用具體的問題情境去幫助學生尋找相應的等量關系,構建“方程”的概念。在本課例中,教師借助天平稱物體的情境,引導學生觀察:當兩邊物體的質量相等時,天平就會保持平衡:當天平兩邊物體質量不相等時,天平不平衡的現象,并運用代數式表達這一現象。理解等式的具體含義是學生學習方程的生長點,教師反復利用天平稱物這一情境,并分析天平兩端物體質量與天平是否平衡的關系,這樣,便以鮮明的直觀形象溝通了
“平衡”與“等式”的聯系。在此基礎上,教師鼓勵學生“寫出自己心目中的方程”,分析、評判每一個方程的合理性,并利用模擬天平設置一種“可以寫成方程”的情景等數學活動,使學生對方程的特征認識有一種意識上的飛躍。創設一系列的具體問題情境讓學生能夠寫出方程,這是多數數學教都會采用的鞏固理解概念的手段,而本例中,教師更強調讓學生說說情境里的等關系。分析方程的各個部分,解釋方程具體含義,感受方程與日常生活的聯系,會方程用數學符號抽象地表達了等量系,這就使得學生對方程的認識從表面向本質。]
小學五年級數學《方程的意義》教案 篇11
教學內容:
教科書第1頁的例1、例2和試一試,完成練一練和練習一的第1~2題。
教學目標:
理解方程的含義,初步體會等式與方程的聯系與區別,體會方程就是一類特殊的等式。
教學重點:
理解并掌握方程的意義。
教學難點:
會列方程表示數量關系。
教學過程:
一、教學例1
1.出示例1的天平圖,讓學生觀察。
提問:圖中畫的是什么?從圖中能知道些什么?想到什么?
2.引導
(1)讓不熟悉天平不認識天平的學生認識天平,了解天平的作用。
(2)如果學生能主動列出等式,告訴學生:像“50+50=100”這樣的式子是等式,并讓學生說說這個等式表示的意思;如果學生不能列出等式,則可提出“你會用等式表示天平兩邊物體的質量關系嗎?”
二、教學例2
1.出示例2的天平圖,引導學生分別用式子表示天平兩邊物體的質量關系。
2.引導:告訴學生這些式子中的“x”都是未知數;觀察這些式子,說一說寫出的式子中哪些是等式,這些等式都有什么共同的特點。
3.討論和交流:寫出的式子中,有幾個是等式,有幾個不是,而寫出的等式都含有未知數,在此基礎上,揭示方程的概念。
三、完成練一練
1.下面的式子哪些是等式?哪些是方程?
2.將每個算式中用圖形表示的未知數改寫成字母。
四、鞏固練習
1.完成練習一第1題
先仔細觀察題中的式子,在小組里說說哪些是等式,哪些是方程,再全班交流。要告訴學生,方程中的未知數可以用x表示,也可以用y表示,還可以用其他字母表示,以免學生誤以為方程是含有未知數x的等式。
2.完成練習一第2題
五、小結
今天,我們學習了什么內容?你有哪些收獲?需要提醒同學們注意什么?還有什么問題?
六、作業
完成補充習題
板書設計:
方程的意義
X+50=100
X+X=100
像X+50=150、2X=200這樣含有未知數的等式叫做方程
小學五年級數學《方程的意義》教案 篇12
篇一
《方程的意義》這節課與學生的生活有密切聯系,通過本節課的學習,要使學生經歷從實際問題中總結概括出數學概念的過程。讓學生初步了解方程的意義,理解方程的概念,感受方程思想。使學生經歷從生活情境到方程概念的建立過程,培養學生觀察、猜想、驗證、分類、抽象、概括、應用等能力。通過自主探究,合作交流等數學活動,激發學生的興趣,所以我在教學設計的過程中十分重視學生原有的知識基礎,用直觀手法向抽象過渡,用遞進形式層層推進,讓學生經歷一個知識形成的過程,并盡可能讓他們用語言表達描述出自己對學習過程中的理解,最后形成新的知識脈絡。下面就結合這節課,談談我在教學中的做法和看法。
一、復習導入,激趣揭題
該環節主要復習與新知識有間接聯系的舊知識,為學習新知識鋪墊搭橋,以舊引新,方程是表達實際問題數量關系的一種數學模型,是在學生熟悉了常見的數量關系,能夠用字母表示數的基礎上教學的,因此開課伊始我結合與學生有關的一些生活現象出示了一組題,要求學生用含有字母的式子表示出來。這些題的出現即能讓學生復習鞏固以前所學的知識也能讓學生體會到我們生活中有很多現象都能用式子表示出來,激起學生的學習興趣,引出這節課的學習內容,這樣的開課很實際,很干脆,也很有用。
二、實踐操作,建立方程模型
1.用天平創設情境直觀形象,有助學生理解式子的意思
等式是一個數學概念。如果離開現實背景出現都是已知數組成的等式,雖然可以通過計算體會相等,但枯躁乏味,學生不會感興趣。如果離開現實情境出現含有未知數的等式,學生很難體會等式的具體含義。天平是計量物體質量的工具,但它也可以通過平衡或者不平衡判斷出兩個物體的質量是否相等,天平圖創設情境,利用鮮明的直觀形象寫出表示相等的式子和表示不相等的式子,可以幫助學生理解式子的意思,也充分利用了教材的主題圖。
2、自主操作,提高能力,激發興趣
在探究方程的意義時我特意給學生提供操作天平平衡的不同材料,讓學生分組實踐,通過操作、觀察天平的狀態得到許多不同的式子,由于材料不同,每個組所得的式子也不同,有的全是已知數的式子,有的是含有未知數的式子,多種多樣的式子激起學生的探究欲望激發學生觀察興趣。
三、實際運用,升華提高
在練習設計中由易到難,由淺入深,使學生的思維不斷發展,使學生對于方程意義的理解更為深刻,特別使讓學生自由創作方程這一練習題,既讓學生應用了知識又培養了學生的創新思維。
本課時教學設計,改變了傳統學習方式,利用課本的靜態資源通過現代化教學手段,把數學情景動態化,大大激發了學生的學習興趣,充分體現了以學生為主,讓學生獨立思考,不斷歸納,把學生從被動地接受知識轉為自己探究,為學生提供了自主探究,合作交流的空間。在學習中體會到了學習數學的樂趣,在獲取知識的同時,情感態度,能力等方面都得到發展。當然這節課還存在一些問題,比如對等式與方程的關系突出得不夠,讀學生“說”的訓練不夠,應該給學生更多的表述的機會。
篇二
縱觀整節課教學,我認為已經基本把握教材的重難點。在講解“方程的解”定義時,能從驗算例子答案出發,讓學生體會到“方程左右兩邊相等”的特征,從而能更好地理解“方程的解”的定義。
在講授“解方程”定義概念時,我主要從教材思想出發,通過讓學生說出采用各自不同的方法求解方程的解,讓學生明白“解方程的各種方法,目的只有一個,那就是求出解,但不同的方法有自身不同的求解過程”著重讓學生理解“求解過程”。
在這基礎上,讓學生討論發現兩個概念定義之間的區別。
在講授“解方程:x+7=13”例題時,我安排一個成績中等的學生上來解答(因為是新課,學生還沒有接觸過正確規范的書寫格式,學生的求解方法和過程步驟,能代表整個班級的情況。況且學生的求解過程能起到反例的作用,為下面比較教學——從對比中認識正確的求解過程做好鋪墊)
板書正確書寫格式后,讓學生通過比較發現該如何正確規范地求解方程的解。
整節課教學存在幾點不足:
1、學生課堂練習量少。這與定義的教學花費太多時間有關。
2、對學生新課之前的求解方程的解的方法缺少關注。解方程是可以有很多方法的,需要鼓勵學生的多向發散思維。
3、教師課堂上雖然提到“對于一個x的值,它究竟是不是方程的解呢?為什么?”,但還是缺乏相關練習,因為這一內容對理解“方程的解”有極強的意義。
小學五年級數學《方程的意義》教案 篇13
教學內容:
方程的意義和解簡易方程(教材第105一107頁,練習二十六)。
教學要求:
1.使學生理解和掌握等式及方程、方程的解和解方程的意義,以及等式與方程,方程的解與解方程之間的聯系和區別。
2.使學生理解并掌握解方程的依據、步驟和書寫格式,培養良好的解題習慣。
教 具:
教學天平、小黑板。
學 具:
自制的簡易天平、定量方塊。
教學步驟:
一、復習
1.根據加法與減法,乘法與除法的關系說出求下面各數的方法。
(1)一個加數=( )○( )
(2)被減數=( )○( )
(3)減數=( )○( )
(4)一個因數=( )○( )
(5)被除數=( )○( )
(6)除數=( )○( )
2.求未知數x(并說說求下面各題x的依據)。
(1)20十x=100 (2)3x=69
(3)17—x=0.6 (4)x÷5=1.5
二、新授
1.理解和掌握“方程的意義”。
(1)出示天平,介紹使用方法(演示)后,設問:
在天平兩邊放物體,在什么情況下才能使天平保持平衡?
(兩邊的物體同樣重時,天平才能保持平衡。)
(2)演示:在左邊放兩個重物各20克和30克,右邊砝碼也是50克,讓學生觀察,天平是平衡的。說明了什么?怎樣用式子表示?
板書:20十30=50
指出:表示左右兩邊相等的式子叫等式。
(并板書)等式:表示等號兩邊兩個式子的相等關系,即等式是表示相等關系的式子。
(3)教學例2(課本105頁)。
①教師繼續演示,調整,在左盤放一20克的重物和一個未知重量的方塊,右盤里放一個100克重的磚碼。(如教材105頁第二幅圖)讓學生觀察天平是否平衡(指針正好指在刻度線中央,天平是平衡的),那么也就說明了這個天平左右兩邊的物體的重量相等。怎樣用等式表示出來呢?
板書:20+?=100
②等式“20+?=100”中的?是未知數,通常我們用“x”來表示,那么上面的等式可寫成 (板書)20十x=100
③比較:等式“20+x=100”與等式“20+30=50”有什么不同?(含有未知數)教師指出,“20+x=100”是含有未知數的等式。
④想一想:x等于多少,才能使等式“20+x=100”左右兩邊相等?(未知方塊重80克時才能使天平兩邊的重量相等,即x=30)
(4)教學例3(課本106頁)。
出示教材第106頁上面的例圖的放大圖,并根據圖意寫出等式。設問:
①圖中每個籃球的價錢是x元,3個籃球的總價是多少元?(3x)
②依圖示(看圖)表明3個籃球的總價(3x)是多少元?(234元)它們之間的關系可以用一個怎樣的等式表示出來?
(板書)3x=234
③這個等式有什么特點?(含有未知數)當x等于多少時,這個等式等號左右兩邊正好相等?(x=78)
(5)方程的意義:
綜合觀察以上三個等式,想一想,它們之間有什么聯系,有什么區別:
20+30=50……一般的等式
20+x=200 含有未知數的等式
3x=234 稱之為方程
(板書)像20+x=100 3x=234 x—10=35 x÷12=5等,含有未知數的等式叫做方程。
①根據方程的含義,方程應該具備哪些條件,(一要是等式,二要含有未知數,二者缺一不可。)
②方程與等式之間是什么關系?(是方程就一定是等式,但是等式不一定是方程,也就是說方程是等式的一部分,小學數學教案《數學教案-方程的意義和解簡易方程》。)
(6)練一練(指名學生判斷,并說明理由)教材第106頁“做一做”。
2.學習“解簡易方程”。
(i)理解和掌握方程的解和解方程的含義。設問:①看教材第107頁,什么叫做方程的解?什么叫解方程?
(板書)使方程左右兩邊相等的未知數的值,叫做方程的解。
例如:x=80是方程20+x=100的解;
x=78是方程3x=234的解。
(板書)求方程的解的過程叫做解方程。
②方程的解和解方程有什么聯系和區別?
方程的解是指未知數的值等于多少時能使等式左右兩邊相等;而解方程是指求出這個未知數的值的過程。因此方程的解是解方程過程中的一部分。它們既有聯系,又有區別。
(2)教學例1:
解方程x一8=16
①教師指出:我們以前做過一些求未知數x的題目,實際上就是解方程,以前怎么解,現在仍然怎么解,只是在格式要求方面增加了新的內容。
②引導學生說出自己的推想過程:題中的未知數x相當于什么數?(被減數)怎么求被減數?(減數十差)
(板書)解方程x一8=16
解::根據被減數等于減數加差;
x=16十8(與原來學過的求x的思路相同)
x=24
檢驗:把x=24代人原方程
左邊=24一8=16,右邊=16
左邊=右邊
所以x=24是原方程的解。
總結有關的格式要求:
①做題時要先寫上“解”字。
②各行的等號要對齊,并且不能連等。
③方框里的運算根據可以不寫。
④驗算以“檢驗”的形式出示,有固定的格式。解方程時,除了要求寫檢驗以外,都要口算進行檢驗,防止走過場。
指導學生看教材第105一107頁。
三、鞏固
1.教材107頁“做一做”。
2,教材第108頁練習二十六第1、2題。
四、練習
教材第108頁,練習二十六第3~5題。
作業輔導
1.判斷題。
(1)含有未知數的式子叫方程。 ( )
(2)方程是等式,所以等式也叫方程。 ( )
(3)檢驗方程的解,應當把求得的解代人原方程。()
(4)36是方程x÷3=12的解。 ( )
2.把下面的各關系式寫完整。
(1)一個加數=( )○( )
(2)被減數=( )○( )
(3)減數=( )○( )
(4)一個因數=( )○( )
(5)除數=( )○( )
(6)被除數=( )○( )
3.解下列方程。(第一行兩小題要寫出檢驗過程)
10—x=0.42 4.5x=27 x十5.8=16.4
x÷28=76 2÷x=0.5 x—8.75=4.65
板書設計:
解簡易方程
小學五年級數學《方程的意義》教案 篇14
一、教學目標
1.知識與技能目標:使學生初步認識方程的意義,知道等式和方程之間的關系,并能進行辨析。
2.過程與方法目標:通過自主探究、合作交流激發學生的學習興趣,培養他們的合作意識。
3.情感態度價值觀目標:讓學生感受方程與生活的密切聯系,發展其抽象思維能力和符號感。
二、教學重難點
重點:理解方程的意義。
難點:理解方程與等式的異同。
三、教學過程
尊敬的各位老師大家好,我是小學數學組2號考生,今天我試講的題目是方程的意義,下面我將正式開始我的試講。
上課,同學們好,請坐。
【導入】
導入:同學們,你們都喜歡玩蹺蹺板嗎?看熊二和光頭強也在玩蹺蹺板,我們一起來看一看,可以他們的體重懸殊太大了,光頭強高高的被掛了起來。看吉吉和圖圖也來了。光頭強和吉吉涂涂坐在一邊,熊二坐在另一邊,怎么樣?對呀,蹺蹺板正好平衡了,那你們用一個算式來表示就是,對,熊二的體重等于光頭強+{吉吉+圖圖的體重,其實在蹺蹺板中也蘊含著豐富的數學知識,這節課就讓我們一起走進數學王國,去探究方程的意義。
【新授】
活動一:
根據翹翹板的這種現象呀,科學家就設計出了天平。看老師面前就有一個天平,天平已經是我們的老朋友了,之前我們認識克的時候就認識了她,那誰來向大家介紹一下這位老朋友呢?請你來介紹,你介紹的可真全面,請坐,天平有兩個托盤,中間有一個刻度盤,天平中間有一個指針,天平左右兩邊物體重量相等的時候,天平就平衡,我們一般是左物右碼。
那我們一起來操作一下天平,同學們仔細看,老師先將右盤上放上100克砝碼,再在左盤上放上兩個50克的砝碼,你們發現了什么?對呀,天平平衡了。誰來用一個式子的來表示呢?請你來說,說的非常準確,請坐,50+50=100。
活動二:
那我們一起觀察這個算是它有什么特點呢?請你來說目光非常敏銳等號左邊和右邊相等,這樣的式子就是一個等式。接下來再來認真觀察,老師將左邊兩個50克的砝碼拿下來,在重新在天平的左邊放上一個杯子,你們發現了什么?對呀,天平平衡了,也就是說杯子的重量是100克,同學們是這樣的嗎?那老師帶往杯子里倒一些水,又出現了什么情況呀?對呀,天平朝向杯子這邊傾斜了,也就是說杯子的重量加水的重量大于100克。那我們再向天平右邊放個100克的砝碼,看一看有什么變化?天平還是朝杯子這邊傾斜,那你們能用將這個過程用一個式子來表示一下嘛,請你來說。說的真不錯,請坐。杯子加水的重量大于200克,誰還有更好的方法,來做的最端正的同學,請你來說你的小腦袋可真靈活,請坐。對呀,上節課我們已經學過了用字母表示數。我們可以用字母x來表示水的重量,剛剛我們已經稱出了杯子的重量是100克,所以用式子來表示就是x+100大于200。同學們,你們都想到這個方法了嗎?你們可真棒,那我們繼續操作,我們再向右邊托盤放100克的砝碼,看一看有什么變化呀?來請你來說,說的非常棒,請坐。天平朝向右邊托盤傾斜了。那這個過程我沒有該用哪個式子來表示呢?對呀,x+100小于300,看來我們剛剛放100克的砝碼放過大了,那我們再放一個小一點的試一試。
我們將這100克的砝碼換成50克的砝碼來試一試。同學們仔細觀察,對呀,我們的天平竟然平衡了,那也就是說我沒杯子加水的重量等于250克,那我們用算式來表示該如何表示呢?來躲著最端正的同學,請你來說,說的非常棒,請坐x+100=250。同學們可真是太棒了,
活動三:
通過我們的共同探索,和一起操作寫出了這么多的方式,我們帶來仔細觀察這些算式,這些算式之間有哪些共同點和不同點呢?
先獨立思考,再小組合作討論,完成以端正的坐姿來示意老師,看哪個小組的發現又快又好開始。老師看同學們都已經坐端正了,誰來說一說你的發現,請你來說觀察的非常敏銳,請坐。有的算式是等式,洋浦的是不等式,那我們再來看一看這等式的兩個算式之間他們有什么不同呢?請你來說,這可真是一個了不起的發現,請坐。第二個算式有一個未知數x,而第一個沒有,其實像這種含有未知數x的等式就是我們今天所學習的方程。
那是不是所有的等式都是方程呢?對呀,不是。只有含有未知數的等式才是方程,也就是說要判斷一個式子是不是方程,我們需要注意哪幾點呢?來請你來說,說的非常棒,我們需要有兩個條件,一個是含有未知數,二是等式。
同學們,你們都是這樣想的嗎?那老師這樣說你們看對不對?方程是等式,對這樣說是正確的,那等式是方程呢?對呀,這樣說不正確,因為還需要一個條件,也就是說這個等式里必須含有未知數。
觀察一下黑板上這些內容,以上就是本節課所要學習的方程的意義。
【鞏固練習】
那我們看一看這道題,老師買了三本練習本,一共花了2.4元,我都沒本練習本價格用x來表示,那又該如何列算式?請你來說好,請多3等于2.4,我們上節課已經學習了,用字母表示數的時候數字與字母相乘,其中的稱號我們可以省略,數字放在前面,所以是3x等于2.4。是方程嗎/對呀,是我們一起來看一看符合不符合這兩個條件是不是等是,對是等式,而且還有未知數。
【課堂小結】
不知不解本節課已經接近了尾聲哪位同學來說一說本節課都有那些收獲呢?班長你手舉得最高你來說,他說啊通過本節課認識了什么是方程,什么是等式。看來啊本節課上特聽講非常認真,請坐!
【作業布置】
那接下來老師老師給大家布置一個小任務,課下去搜集一下我國古代如何解決類似的問題呢?下節課一起來交流討論一下。
本節課就先上到這,下課,同學們再見!
尊敬的各位考官,我的試講到此結束,感謝各位考官的耐心聆聽!
小學五年級數學《方程的意義》教案 篇15
一 。教材分析
教材內容選自義務教育課程標準實驗教科書(人教版)五年級(上冊)第53頁——54頁。做一做。練習十一 1——3題。教材的編寫意圖是從等式引入,首先通過天平演示,說明天平平衡的條件是左右兩邊所放物體質量相等。同時得出一只空杯正好100克,然后在杯中倒入水,并設水重x克。通過逐步嘗試,得出杯子和水共重250克。從而由不等到相等,引出含有未知數的等式稱為方程。
為提供更為豐富的感知材料,教材提出:你會自己寫出一些方程嗎?然后通過三位小朋友在黑板上寫方程的插圖,讓學生初步感知方程的多樣性。
在“做一做”里,教材給出了6個式子,讓學生識別哪些是方程。要讓學生明白,未知數還可以用不同的字母表示。
“你知道嗎”的閱讀材料,簡要介紹了有關方程的一些史料。通過讓學生閱讀,了解一些有關方程的歷史和發展。
二。學法指導
學生在學習了用字母表示數量關系以后通過一定的情景進一步學習方程的意義,列方程和用方程表示簡單的數量關系。學生要在熟悉用含有字母的式子表示數量關系的基礎上理解和掌握方程的意義。在天平的演示情景中觀察,思考,討論,探究。說出方程的特點并由不等的式子到相等的式子,從而推導方程的意義并能擴展到根據方程的意義列出簡單的方程和用方程表示簡單數量關系。
三。教法
1.指導思想
本課教學是以天平的演示實驗為情景引入教學內容的,教學引導學生充分地觀察,探究,主動掌握有關知識和技能;進行合作學習和探究,培養學生的交流意識,發現意識。
2.教學方法
根據五年級學生的知識結鉤和認知水平,從生活實際中的情景——用天平稱量物體重量入手,通過教學課件的使用使學生觀察“等式”——“不等式”——“方程”的演示過程,深刻理解方程是含有未知數的等式。然后結合幾道判斷題讓學生舉例深化對方程意義的理解,最后設計二組情景讓學生列出方程和用方程表示數量關系使方程的概念得到拓展和沿伸。
四。 教學流程
1.舊知練習,學前準備
這一部分共安排了4道填空題。目地是通過復習用含有字母的式子表示數量關系來為本節課的內容作鋪墊從而引入本課的課題“方程的意義”。
2.情景引入,探究新知
從天平的認識入手,讓學生了解一些天平的使用知識。然后演示出天平左右盤分別放一個空杯子和一個100克的琺碼,使學生觀察到在天平平衡的情況下空杯子的重量和琺瑪的重量是相等的。從而為等式的引入作鋪墊。繼續演示,在杯中倒滿水,天平傾斜,說明不平衡,得到100+x》100的不等式。再增加琺碼,又得到100+x《300的不等式。最后天平逐漸平蘅,左右兩邊相等,得到100+x=250這樣一個含有未知數的等式,稱為方程。使學生理解,方程應該是一個等式,而且是一個含有未知數的等式。這樣就讓學生初步掌握了方程的意義。接著將式子中的x換成b,式子還是方程。說明方程中的未知數可以用不同的字母表示。
3.深化概念,加強理解
先出示一組式子判斷是不是方程,說出判斷的理由,使學生對方程的概念作初步的理解和判斷。討論m+n=3是否是方程,讓學生知道方程中的未知數可以不只一個。最后讓學生寫出一些方程和舉出反例是對學生知識和技能及運用能力的培養。
4.聯系實際,應用拓展
(1)列出第62頁第2提的方程是讓學生在熟悉的情景中根據方程的意義列出方程。
(2)用方程表示數量關系的情景是對用含有字母的式子表示數量關系和方程的意義的整合運用。引導學生列出方程,還可啟發學生列出不同的方程。
5.總結全課:對教學內容進行梳理。
6.課堂作業:當堂練習或課下完成。
小學五年級數學《方程的意義》教案 篇16
教學內容:方程的意義和解簡易方程(教材第105一107頁,練習二十六)。
教學要求:
1.使學生理解和掌握等式及方程、方程的解和解方程的意義,以及等式與方程,方程的解與解方程之間的聯系和區別。
2.使學生理解并掌握解方程的依據、步驟和書寫格式,培養良好的解題習慣。
教 具:
教學天平、小黑板。
學 具:
自制的簡易天平、定量方塊。
教學步驟:
一、復習
1.根據加法與減法,乘法與除法的關系說出求下面各數的方法。
(1)一個加數=( )○( )
(2)被減數=( )○( )
(3)減數=( )○( )
(4)一個因數=( )○( )
(5)被除數=( )○( )
(6)除數=( )○( )
2.求未知數X(并說說求下面各題X的依據)。
(1)20十X=100 (2)3X=69
(3)17X=0.6 (4)x5=1.5
二、新授
1.理解和掌握方程的意義。
(1)出示天平,介紹使用方法(演示)后,設問:
在天平兩邊放物體,在什么情況下才能使天平保持平衡?
(兩邊的物體同樣重時,天平才能保持平衡。)
(2)演示:在左邊放兩個重物各20克和30克,右邊砝碼也是50克,讓學生觀察,天平是平衡的。說明了什么?怎樣用式子表示?
板書:20十30=50
指出:表示左右兩邊相等的式子叫等式。
(并板書)等式:表示等號兩邊兩個式子的相等關系,即等式是表示相等關系的式子。
(3)教學例2(課本105頁)。
①教師繼續演示,調整,在左盤放一20克的重物和一個未知重量的方塊,右盤里放一個100克重的磚碼。(如教材105頁第二幅圖)讓學生觀察天平是否平衡(指針正好指在刻度線中央,天平是平衡的),那么也就說明了這個天平左右兩邊的物體的重量相等。怎樣用等式表示出來呢?
板書:20+?=100
②等式20+?=100中的?是未知數,通常我們用X來表示,那么上面的等式可寫成 (板書)20十X=100
③比較:等式20+X=100與等式20+30=50有什么不同?(含有未知數)教師指出,20+X=100是含有未知數的等式。
④想一想:X等于多少,才能使等式20+X=100左右兩邊相等?(未知方塊重80克時才能使天平兩邊的重量相等,即X=30)
(4)教學例3(課本106頁)。
出示教材第106頁上面的例圖的放大圖,并根據圖意寫出等式。設問:
①圖中每個籃球的價錢是X元,3個籃球的總價是多少元?(3x)
②依圖示(看圖)表明3個籃球的總價(3x)是多少元?(234元)它們之間的關系可以用一個怎樣的等式表示出來?
(板書)3X=234
③這個等式有什么特點?(含有未知數)當X等于多少時,這個等式等號左右兩邊正好相等?(X=78)
(5)方程的意義:
綜合觀察以上三個等式,想一想,它們之間有什么聯系,有什么區別:
20+30=50一般的等式
20+X=200 含有未知數的等式
3X=234 稱之為方程
(板書)像20+x=100 3X=234 X10=35 X12=5等,含有未知數的等式叫做方程。
①根據方程的含義,方程應該具備哪些條件,(一要是等式,二要含有未知數,二者缺一不可。)
②方程與等式之間是什么關系?(是方程就一定是等式,但是等式不一定是方程,也就是說方程是等式的一部分。)
(6)練一練(指名學生判斷,并說明理由)教材第106頁做一做。
2.學習解簡易方程。
(i)理解和掌握方程的解和解方程的含義。設問:①看教材第107頁,什么叫做方程的解?什么叫解方程?
(板書)使方程左右兩邊相等的未知數的值,叫做方程的解。
例如:X=80是方程20+X=100的解;
X=78是方程3X=234的解。
(板書)求方程的解的過程叫做解方程。
②方程的解和解方程有什么聯系和區別?
方程的解是指未知數的值等于多少時能使等式左右兩邊相等;而解方程是指求出這個未知數的值的過程。因此方程的解是解方程過程中的一部分。它們既有聯系,又有區別。
(2)教學例1:
解方程X一8=16
①教師指出:我們以前做過一些求未知數X的題目,實際上就是解方程,以前怎么解,現在仍然怎么解,只是在格式要求方面增加了新的內容。
②引導學生說出自己的推想過程:題中的未知數X相當于什么數?(被減數)怎么求被減數?(減數十差)
(板書)解方程X一8=16
解::根據被減數等于減數加差;
X=16十8(與原來學過的求X的思路相同)
X=24
檢驗:把X=24代人原方程
左邊=24一8=16,右邊=16
左邊=右邊
所以X=24是原方程的解。
總結有關的格式要求:
①做題時要先寫上解字。
②各行的等號要對齊,并且不能連等。
③方框里的運算根據可以不寫。
④驗算以檢驗的形式出示,有固定的格式。解方程時,除了要求寫檢驗以外,都要口算進行檢驗,防止走過場。
指導學生看教材第105一107頁。
三、鞏固
1.教材107頁做一做。
2,教材第108頁練習二十六第1、2題。
四、練習
教材第108頁,練習二十六第3~5題。
作業輔導
小學五年級數學《方程的意義》教案 篇17
教學內容:數學書p53-54及“做一做”,練習十一1-3題。
教學目標:
初步理解方程的意義,會判斷一個式子是否是方程。
會按要求用方程表示出數量關系。
培養學生觀察、比較、分析概括的能力。
教學重難點:會用方程的意義去判斷一個式子是否是方程。
教具準備:天平、空水杯、水(可根據實際變換為其它實物)
教學過程:
導入新課
今天我們上課要用到一種重要的稱量工具,它是什么呢?對,它是天平。同學們對天平有哪些了解呢?天平由天平稱與砝碼組成,當放在兩端托盤的物體的質量相等時,天平就會平衡,根據這個原理,從而稱出物體的質量。
新知學習
實物演示,引出方程。
操作天平:第一步,稱出一只空杯子重100克,板書:1只空杯子=100克;
第二步,往往空杯子里倒入約150毫升水(可在水中滴幾滴紅墨水),問:發現了什么?天平出現了傾斜,因為杯子和水的質量加起來比100克重,現在還需要增加砝碼的質量。
第三步,增加100克砝碼,發現了什么?杯子和水比200克重。現在,水有多重,知道嗎?如果將水設為x克,那么用一個式子該怎么表示杯子和水比200克重這個關系呢?100+x>200。
第四步,再增加100克砝碼,天平往砝碼這邊傾斜。問:哪邊重些?怎樣用式子表示?讓學生得出:100+x<300.
第五步,把一個100克的砝碼換成50克,天平出現平衡。現在兩邊的質量怎樣?用式子怎樣表示?讓學生得出:100+x=250。
像這樣含有求知數的等式,人們給它起了個名字,你們知道叫什么嗎?對,叫方程。請大家試著寫出一個方程。
寫方程,加深對方程的認識。
學生試著寫出各種各樣的方程,再在全班展示,當然也有可能會出現一些不是方程的式子,教師應引導學生說出它不是方程的原因。
看書第54頁,看書上列出的一些方程,讓學生讀一讀。然后小結:一個式子要是方程需要具備哪些條件?兩個條件,一要是等式,二要含有求知數(即字母),這也是判斷一個式子是不是方程的依據。
反饋練習。
完成做一做,在是方程的式子后面打上“√”。對于不是方程的幾個式子要說明其理由。
小結。
這節課學習了什么?怎么判斷一個式子是不是方程?
提問:方程是不是等式?等式一定是方程嗎?
看“課外閱讀”,了解有關方程產生的數學史。
練習
完成練習十一第2題,先讓學生說出圖意,再根據圖意再列出相應的方程。
獨立完成第3題,評講時,介紹什么叫數量關系要,然后讓學生先說出各幅圖中的數量關系,再說出相應的方程,同一幅圖由于數量關系有不同的形式,因此方程形式也可能不同。
作業
練習十一第1題。