考研學子打造的高數寒假復習計劃(通用5篇)
考研學子打造的高數寒假復習計劃 篇1
復習高數書上冊第五章第1-3節。達到以下目標:
1.理解定積分的幾何意義。
2.掌握定積分的性質及定積分中值定理。
3.掌握定積分換元積分法與定積分廣義換元法.
本周的主要任務是掌握不定積分的性質,會根據不定積分的性質做題。尤其注意積分上下限互換后積分值變為其相反數,定積分與變量無關,可根據函數奇偶性計算定積分等性質。
考研學子打造的高數寒假復習計劃 篇2
復習高數書上冊第四章 第1-3節。需達到以下目標:
1.理解原函數的概念,理解不定積分的概念.
2.掌握不定積分的基本公式,掌握不定積分的性質,掌握不定積分換元積分法與分部積分法.會求簡單函數的不定積分。
本周主要任務是掌握不定積分的性質,不定積分的公式[牢記一個函數的原函數有無窮多個,注意+C],會運用第一,第二換元法求函數的不定積分。掌握不定積分分部積分公式并應用。
考研學子打造的高數寒假復習計劃 篇3
復習高數書上冊第一章,需要達到以下目標:
1.理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系.
2.了解函數的有界性、單調性、周期性和奇偶性.
3.理解復合函數及分段函數的概念,了解反函數及隱函數的概念.
4.掌握基本初等函數的性質及其圖形,了解初等函數的概念.
5.理解極限的概念,理解函數左極限與右極限的概念以及函數極限存在與左、右極限之間的關系.
6.掌握極限的性質及四則運算法則.
7.掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法.
8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限.
9.理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型.
10.了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理),并會應用這些性質.
本階段主要任務是掌握函數的有界性、單調性、周期性和奇偶性;基本初等函數的性質及其圖形;數列極限與函數極限的定義及其性質;無窮小量的比較;兩個重要極限;函數連續的概念、函數間斷點的類型;閉區間上連續函數的性質。
考研學子打造的高數寒假復習計劃 篇4
復習高數書上冊第二章1-3節,需達到以下目標:
1.理解導數和微分的概念,理解導數與微分的關系,理解導數的幾何意義,會求平面曲線的切線方程和法線方程,了解導數的物理意義,會用導數描述一些物理量,理解函數的可導性與連續性之間的關系.
2.掌握導數的四則運算法則和復合函數的求導法則,掌握基本初等函數的導數公式.了解微分的四則運算法則和一階微分形式的不變性,會求函數的微分.
3.了解高階導數的'概念,會求簡單函數的高階導數.
本周主要任務是掌握導數的幾何意義;函數的可導性與連續性之間的關系;平面曲線的切線和法線;牢記 基本初等函數的導數公式;會用遞推法計算高階導數。
考研學子打造的高數寒假復習計劃 篇5
復習高數書上冊第五章第4節,第六章第2節。達到以下目標:
1.掌握積分上限的函數,會求它的導數,掌握牛頓-萊布尼茨公式.
2.掌握定積分換元法與定積分廣義換元法. 會求分段函數的定積分。
3.掌握用定積分計算一些幾何量 (如平面圖形的面積、旋轉體的體積)。了解廣義積分與無窮限積分。
本周主要任務是掌握積分上限函數的性質,掌握牛頓-萊布尼茨公式,應用定積分換元法求定積分。會根據定積分的幾何意義計算平面圖形的面積、旋轉體的體積。