關于高一數學的教學計劃(精選7篇)
關于高一數學的教學計劃 篇1
一、基本情況分析
任教153班與154班兩個班,其中153班是文化班有男生51人,女生22人;154班是美術班有男生23人,女生21人,并且有音樂生8人。兩個班基礎差,學習數學的興趣都不高。
二、指導思想
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力于培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。
三、教學建議
1、深入鉆研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系,細致領悟教材改革的精髓,逐步明確教材對教學形式、內容和教學目標的影響。
2、準確把握新大綱。新大綱修改了部分內容的教學要求層次,準確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數學應用;重視數學思想方法的滲透。如增加閱讀材料(開闊學生的視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施教,以學生為主體,構建新的認識體系,營造有利于學生學習的氛圍。
4、發揮教材的多種教學功能。用好章頭圖,激發學生的學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和復習是培養學生自學的好材料。
5、加強課堂教學研究,科學設計教學方法。根據教材的內容和特征,實行啟發式和討論式教學。發揚教學民主,師生雙方密切合作,交流互動,讓學生感受、理解知識的產生和發展的過程。教研組要根據教材各章節的重難點制定教學專題,每人每學期指定一個專題,安排一至二次教研課。年級備課組每周舉行一至二次教研活動,積累教學經驗。
6、落實課外活動的內容。組織和加強數學興趣小組的活動內容,加強對高層次學生的競賽輔導,培養拔尖人才。
四、教研課題
高中數學新課程新教法。
五、教學進度
略。
關于高一數學的教學計劃 篇2
一、教學內容
高中必修1及必修2的部分教學內容。通過教學,要使學生把數學與實際生活聯系起來,掌握必須掌握的基礎知識與基本技能,進一步培養學生的數學創新意識,良好個性品質以及初步的辯證唯物主義的觀點。指導思想
二、學情及教材分析
高中教學內容深,學生接受起來很困難。所以教師要根據實際情況,面對全體,因材施教,對學習有障礙的學生進行個別輔導。以優待差,發揮學生群體的作用。抓好三類生的教學,促進尖子生,帶好中等生,扶好下等生。順利完成初高中的銜接教學。
三、方法措施
1、本學期我繼續采取的教學模式是:四點------學知識點、抓重點、找疑點、攻難點。
學知識點-----學會本節課應該學會的知識點、本單元的知識點、本冊的知識點。熟知應掌握的概念、法則、定理、公式等。
抓重點--------抓住本節課本單元本冊的的重點。并靈活地運用其中的公式定理法則等學以致用,會做相應的習題,特別是重點習題。
找疑點--------每節課都讓學生找出自己的疑問、疑點,教師采取相應的措施幫助學生解疑化難。
攻難點-------對于本節課,本單元的難點及重點,教師要集中精力對學生加強訓練,引導學生反復練習,形成數學能力,化解難點。
2、總結學習方法。針對學生接受知識困難、又非常容易遺忘的特點,在教學中最關鍵的是要總結好學習方法。只有總結好了方法才會學有所獲。
3、在教學中面向全體學生,因材施教,加強引導,使學生養成良好的學習習慣,注重培養學生興趣和主動性。鼓勵學生大膽創新,勇于探索。培養學生創新能力和創新意識。努力提高學生成績。
4、照顧全體學生,提高尖子生;帶好中等生;抓住后進生。以優帶差,共同提高。不傷害學生的自尊心。讓學生快樂地學習。
5、教師千方百計想出最直觀的教學方法,把課程講明白,直到學生弄明白為止。多使用直觀簡捷的教學方法,注重興趣教學。
6、根據學生容易遺忘的特點,要及時有效地搞好復習。課前提問抓住重點,每周的自習課搞好一周的復習鞏固,做好每個單元的訓練。
7、教師一定要有耐心、信心,相信學生會學好的。
高一班數學的教學計劃(三)
本學期擔任高一(9)(10)兩班的數學教學工作,兩班學生共有120人,初中的基礎參差不齊,但兩個班的學生整體水平不高;部分學生學習習慣不好,很多學生不能正確評價自己,這給教學工作帶來了一定的難度,為把本學期教學工作做好,制定如下教學工作計劃。
一、指導思想:
使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會進步的需要。具體目標如下。
1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4.發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。
6.具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
一、教學目標.
(一)情意目標
(1)通過分析問題的方法的教學,培養學生的學習的興趣。
(2)提供生活背景,通過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。(3)在探究函數、等差數列、等比數列的性質,體驗獲得數學規律的艱辛和樂趣,在分組 研究合作學習中學會交流、相互評價,提高學生的合作意識
(4)基于情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維能力的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗“發現——挫折——矛盾——頓悟——新的發現”這一科學發現歷程法。
(二)能力要求 培養學生記憶能力。
(1)通過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養對數學本質問題的背景事實及具體數據的記憶。
(3)通過揭示立體集合、函數、數列有關概念、公式和圖形的對應關系,培養記憶能力。
2、培養學生的運算能力。
(1)通過概率的訓練,培養學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算能力。
(3)通過函數、數列的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數形結合,另辟蹊徑,提高學生運算能力。
高一班數學的教學計劃(四)
一、指導思想:
使學生學好從事社會主義現代化建設和進一步學習現代科學技術所必需的數學基礎知識和基本技能,培養學生的運算能力、邏輯思維能力和空間想象能力,以逐步形成運用數學知識來分析和解決實際問題的能力。要培養學生對數學的興趣,激勵學生為實現四個現代化學好數學的積極性,培養學生的科學態度和辨證唯物主義的觀點。
二、基本情況分析:
1、4班共 人,男生 人,女生 人;本班相對而言,數學尖子約 人,中上等生約 人,中等生約 人,中下生約 人,差生約 人。
5班共 人,男生 人,女生 人;本班相對而言,數學尖子約 人,中上等生約 人,中等生約 人,中下生約 人,差生約 人。
2、4班在初中升入高中的升學考試中,數學成績在100’及以上的有 人,80’—99’有 人,60’—79’有 人,40’—59’有 人,40’以下有 人,其中最高分為 ,最低分為 。
5班在初中升入高中的升學考試中,數學成績在100’及以上的有 人,80’—99’有 人,60’—79’有 人,40’—59’有 人,40’以下有 人,其中最高分為 ,最低分為 。
3、4/5班分別為高一年級9個班中編排一個普高班和一個普高班之后的體育班,整體分析的結果是:
三、教材分析:
1、教材內容:集合、一元二次不等式、簡易邏輯、映射與函數、指數函數和對數函數、數列、等差數列、等比數列。
2、集合概念及其基本理論,是近代數學最基本的內容之一;函數是中學數學中最重要的基本概念之一;數列有著廣泛的應用,是進一步學習高等數學的基礎。
3、教材重點:幾種函數的圖像與性質、不等式的解法、數列的概念、等差數列與等比數列的通項公式、前n項和的公式。
4、教材難點:關于集合的各個基本概念的涵義及其相互之間的區別和聯系、映射的概念以及用映射來刻畫函數概念、反函數、一些代數命題的證明、
5、教材關鍵:理解概念,熟練、牢固掌握函數的圖像與性質。
6、采用了由淺入深、減緩坡度、分散難點,逐步展開教材內容的做法,符合從有限到無限的認識規律,體現了從量變到質變和對立統一的辯證規律。每階段的內容相對獨立,方法比較單一,有助于掌握每一階段內容。
7、各部分知識之間的聯系較強,每一階段的知識都是以前一階段為基礎,同時為下階段的學習作準備。
8、全期教材重要的內容是:集合運算、不等式解法、函數的奇偶性與單調性、等差與等比數列的通項和前n項和。
四、教學要求:
1、理解集合、子集、交集、并集、補集的概念。了解空集和全集的意義,了解屬于、包含、相等關系的意義,能掌握有關的術語和符號,能正確地表示一些簡單的集合。
2、掌握一元二次不等式的解法和絕對值不等式的解法,并能熟練求解。
3、了解命題的概念、邏輯聯結詞的含義,掌握四種命題及其關系,掌握充分、必要、充要條件,初步掌握反證法。
4、了解映射的概念,在此基礎上理解函數及其有關的概念,掌握互為反函數的函數圖象間的關系。
5、理解函數的單調性和奇偶性的概念,并能判斷一些簡單函數的單調性和奇偶性,能利用函數的奇偶性與圖象的對稱性的關系描繪圖象。
6、掌握指數函數、對數函數的概念及其圖象和性質,并會解簡單的函數應用問題。
7、使學生理解數列的有關概念,掌握等差數列與等比數列的概念、通項公式、前n項和的公式,并能夠運用這些知識解決一些問題。
五、教學措施:
1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從實例出發,從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3、加強培養學生的邏輯思維能力就解決實際問題的能力,以及培養提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環節,針對不同的教材內容選擇不同教法。
六、教學進度安排:
九月份: 集合(2)、子集、全集、補集(2)、交集、并集(2)、集合習題(1)
絕對值不等式(1)、一元二次不等式(2)、不等式習題(1)
邏輯聯結詞(1)、四種命題(1)、充要條件(1)、習題(1)、
第一章小結與練習(3)
十月份: 映射(1)、函數(2)、單調性奇偶性(3)、反函數(2)、習題(1)
指數(1)、指數函數(3)、對數(2)、對數函數(3)、習題(1)
函數應用舉例(2)、第二章小結與練習(3)
十一月份:期中復習與考試(8)、數列(2)、
等差數列(2)、等差數列的前n項和(2)、習題(1)
等比數列(2)、等比數列的前n項和(2)、
十二月份:分期付款等應用(2)、習題(1)
第三章小結與練習(3)、復習(12)
元月份: 期末復習(8)
附:高一數學教學的幾點具體措施
1、作業方面:
①課堂作業設置一本;提倡用鋼筆書寫,一律要求用鉛筆、尺規作圖,書寫規范;墨跡、錯誤用橡皮擦擦干凈,保持作業本整潔;當天布置,當天第二節晚自習之前交(若無晚自習,則第二天早讀之前交);批閱用“?”號代表錯誤,一般點在錯誤開始處,自覺完成更正;
②每次作業按A、B、C、D四個等級評定,分別得分5、4、3、2,每本作業本完成后自行統計得分并上交科代表審核、教師評定等級,得分90%~98%為優良等級,98%及以上為優秀等級;
③《同步優化設計》及時完成,按進度交閱,自覺訂正。
2、考試方面:
①控制考試次數,一般為:月考2次,期中期末統考各1次,期末復習小考2次;
②制好試卷,切合實際,難易適中,目標高考;
③組織好考試,嚴格考試紀律。
3、興趣方面:
①組織一次活動、一次競賽;
②多上一些多媒體課、優質課;
③每兩周安排一節課時,由課代表組織4個學生講課,每人10分鐘左右,主要講解《同步優化設計》上的難題。
4、成績總評:
①每期總評成績150分,分為三大項,分值為:考試成績125分(2次月考各5’、期中15’、期末100’)、平時成績24分(作業10’、練習8’、2次小考各3’)、自評1分。
②提倡準備筆記本、考試錯題更正本,并檢查后給予加分5’、2’,其它特別表現給予加分3’。
5、抓好學習常規,提高學習成績。
高一班數學的教學計劃(五)
一、指導思想:
(1)隨著素質教育的深入展開,《課程方案》提出了“教育要面向世界,面向未來,面向現代化”和“教育必須為社會主義現代化建設服務,必須與生產勞動相結合,培養德、智、體等方面全面發展的社會主義事業的建設者和接班人”的指導思想和課程理念和改革要點。使學生掌握從事社會主義現代化建設和進一步學習現代化科學技術所需要的數學知識和基本技能。
(2)培養學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關數學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力。
(3)根據數學的學科特點,加強學習目的性的教育,提高學生學習數學的自覺心和興趣,培養學生良好的學習習慣,實事求是的科學態度,頑強的學習毅力和獨立思考、探索創新的精神。
(4)使學生具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,理解數學中普遍存在著的運動、變化、相互聯系和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學會通過收集信息、處理數據、制作圖像、分析原因、推出結論來解決實際問題的思維方法和操作方法。
(6)本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎,加強綜合能力的培養,又要滲透有關高考的思想方法,為三年的學習做好準備。
二、學生狀況分析
本學期擔任高一(1)班和(5)班的數學教學工作,學生共有111人,其中(1)班學生是名校直通班,學生思維活躍,(5)班是火箭班,學生基本素質不錯,一些基本知識掌握不是很好,學習積極性需要教師提高,成績以中等為主,中上不多。兩個班中,從軍訓一周來看,學生的學習積極性還是比較高,愛問問題的同學比較多,但由于基礎知識不太牢固,上課效率不是很高。
二、教材簡析
使用人教版《普通高中課程標準實驗教科書數學(A版)》,教材在堅持我國數學教育優良傳統的前提下,認真處理繼承、借鑒、發展、創新之間的關系,體現基礎性、時代性、典型性和可接受性等,具有親和力、問題性、科學性、思想性、應用性、聯系性等特點。必修1有三章(集合與函數概念;基本初等函數;函數的應用);必修4有三章(三角函數;平面向量;三角恒等變換)。
必修1,主要涉及兩章內容:
第一章 集合
通過本章學習,使學生感受到用集合表示數學內容時的簡潔性、準確性,幫助學生學會用集合語言表示數學對象,為以后的學習奠定基礎。
1.了解集合的含義,體會元素與集合的屬于關系,并初步掌握集合的表示方法;
2.理解集合間的包含與相等關系,能識別給定集合的子集,了解全集與空集的含義;
3.理解補集的含義,會求在給定集合中某個集合的補集;
4.理解兩個集合的并集和交集的含義,會求兩個簡單集合的并集和交集;
5.滲透數形結合、分類討論等數學思想方法;
6.在引導學生觀察、分析、抽象、類比得到集合與集合間的關系等數學知識的過程中,培養學生的思維能力。
第二章 函數的概念與基本初等函數Ⅰ
教學本章時應立足于現實生活從具體問題入手,以問題為背景,按照“問題情境—數學活動—意義建構—數學理論—數學應用—回顧反思”的順序結構,引導學生通過實驗、觀察、歸納、抽象、概括,數學地提出、分析和解決問題。通過本章學習,使學生進一步感受函數是探索自然現象、社會現象基本規律的工具和語言,學會用函數的思想、變化的觀點分析和解決問題,達到培養學生的創新思維的目的。
1.了解函數概念產生的背景,學習和掌握函數的概念和性質,能借助函數的知識表述、刻畫事物的變化規律;
2.理解有理指數冪的意義,掌握有理指數冪的運算性質;掌握指數函數的概念、圖象和性質;理解對數的概念,掌握對數的運算性質,掌握對數函數的概念、圖象和性質;了解冪函數的概念和性質,知道指數函數、對數函數、冪函數時描述客觀世界變化規律的重要數學模型;
3.了解函數與方程之間的關系;會用二分法求簡單方程的近似解;了解函數模型及其意義;
4.培養學生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創新意識與探究能力、數學建模能力以及數學交流的能力。
必修4,主要涉及三章內容:
第一章 三角函數
通過本章學習,有助于學生認識三角函數與實際生活的緊密聯系,以及三角函數在解決實際問題中的廣泛應用,從中感受數學的價值,學會用數學的思維方式觀察、分析現實世界、解決日常生活和其他學科學習中的問題,發展數學應用意識。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函數的定義,理解同角三角函數的基本關系及誘導公式;
3.了解三角函數的周期性;
4.掌握三角函數的圖像與性質。
第二章 平面向量
在本章中讓學生了解平面向量豐富的實際背景,理解平面向量及其運算的意義,能用向量的語言和方法表述和解決數學和物理中的一些問題,發展運算能力和解決實際問題的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、減法和向量數乘的運算;
3.理解平面向量的正交分解及其坐標表示,掌握平面向量的坐標運算;
4.理解平面向量數量積的含義,會用平面向量的數量積解決有關角度和垂直的問題。
第三章 三角恒等變換
通過推導兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及積化和差、和差化積、半角公式的過程,讓學生在經歷和參與數學發現活動的基礎上,體會向量與三角函數的聯系、向量與三角恒等變換公式的聯系,理解并掌握三角變換的基本方法。
1.掌握兩角和與差的余弦、正弦、正切公式;
2.掌握二倍角的正弦、余弦、正切公式 ;
3.能正確運用三角公式進行簡單的三角函數式的化簡、求值和恒等式證明。
三、教學任務
本期授課內容為必修1和必修4,必修1在期中考試前完成(約在11月5日前完成);必修4在期末考試前完成(約在12月31日前完成)。
四、教學質量目標
1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,體會數學思想和方法。
2.提高空間想象、抽象概括、推理論證、運算求解、數據處理等基本能力。
3.提高學生提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4.發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。
6.具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
五、促進目標達成的重點工作及措施
重點工作:
認真貫徹高中數學新課標精神,樹立新的教學理念,以“雙基”教學為主要內容,堅持“抓兩頭、帶中間、整體推進”,使每個學生的數學能力都得到提高和發展。
分層推進措施
1、重視學生非智力因素培養,要經常性地鼓勵學生,增強學生學習數學興趣,樹立勇于克服困難與戰勝困難的信心。
2、合理引入課題,由數學活動、故事、提問、師生交流等方式激發學生學習興趣,注意從實例出發,從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3、培養能力是數學教學的落腳點。能力是在獲得和運用知識的過程中逐步培養起來的。
在銜接教學中,首先要加強基本概念和基本規律的教學。
加強培養學生的邏輯思維能力和解決實際問題的能力,以及培養提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育。
4、講清講透數學概念和規律,使學生掌握完整的基礎知識,培養學生數學思維能力 ,抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環節(引入、探究、例析、反饋),針對不同的教材內容選擇不同教法,提倡創新教學方法,把學生被動接受知識轉化主動學習知識。
6、重視數學應用意識及應用能力的培養。
7、加強學生良好學習習慣的培養
六、教學時間大致安排
集合與函數概念 13 課時
基本初等函數 15 課時
函數的應用 8課時
三角函數 24課時
平面向量 14 課時
三角恒等變換 9 課時
關于高一數學的教學計劃 篇3
(一)教學目標
1.知識與技能
(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集和交集.
(2)能使用Venn圖表示集合的并集和交集運算結果,體會直觀圖對理解抽象概念的作用。
(3)掌握的關的術語和符號,并會用它們正確進行集合的并集與交集運算。
2.過程與方法
通過對實例的分析、思考,獲得并集與交集運算的法則,感知并集和交集運算的實質與內涵,增強學生發現問題,研究問題的創新意識和能力.
3.情感、態度與價值觀
通過集合的并集與交集運算法則的發現、完善,增強學生運用數學知識和數學思想認識客觀事物,發現客觀規律的興趣與能力,從而體會數學的應用價值.
(二)教學重點與難點
重點:交集、并集運算的含義,識記與運用.
難點:弄清交集、并集的含義,認識符號之間的區別與聯系
(三)教學方法
在思考中感知知識,在合作交流中形成知識,在獨立鉆研和探究中提升思維能力,嘗試實踐與交流相結合.
(四)教學過程
教學環節 教學內容 師生互動 設計意圖
提出問題引入新知 思考:觀察下列各組集合,聯想實數加法運算,探究集合能否進行類似“加法”運算.
(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}
(2)A = {x | x是有理數},
B = {x | x是無理數},
C = {x | x是實數}.
師:兩數存在大小關系,兩集合存在包含、相等關系;實數能進行加減運算,探究集合是否有相應運算.
生:集合A與B的元素合并構成C.
師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運算. 生疑析疑,
導入新知
形成
概念
思考:并集運算.
集合C是由所有屬于集合A或屬于集合B的元素組成的,稱C為A和B的.并集.
定義:由所有屬于集合A或集合B的元素組成的集合. 稱為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B = {x | x∈A,或x∈B},Venn圖表示為:
師:請同學們將上述兩組實例的共同規律用數學語言表達出來.
學生合作交流:歸納→回答→補充或修正→完善→得出并集的定義. 在老師指導下,學生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義.
應用舉例 例1 設A = {4,5,6,8},B = {3,5,7,8},求A∪B.
例2 設集合A = {x | –1
例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.
例2解:A∪B = {x |–1
師:求并集時,兩集合的相同元素如何在并集中表示.
生:遵循集合元素的互異性.
師:涉及不等式型集合問題.
注意利用數軸,運用數形結合思想求解.
生:在數軸上畫出兩集合,然后合并所有區間. 同時注意集合元素的互異性. 學生嘗試求解,老師適時適當指導,評析.
固化概念
提升能力
探究性質 ①A∪A = A, ②A∪ = A,
③A∪B = B∪A,
④ ∪B, ∪B.
老師要求學生對性質進行合理解釋. 培養學生數學思維能力.
形成概念 自學提要:
①由兩集合的所有元素合并可得兩集合的并集,而由兩集合的公共元素組成的集合又會是兩集合的一種怎樣的運算?
②交集運算具有的運算性質呢?
交集的定義.
由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集;記作A∩B,讀作A交B.
即A∩B = {x | x∈A且x∈B}
Venn圖表示
老師給出自學提要,學生在老師的引導下自我學習交集知識,自我體會交集運算的含義. 并總結交集的性質.
生:①A∩A = A;
②A∩ = ;
③A∩B = B∩A;
④A∩ ,A∩ .
師:適當闡述上述性質.
自學輔導,合作交流,探究交集運算. 培養學生的自學能力,為終身發展培養基本素質.
應用舉例 例1 (1)A = {2,4,6,8,10},
B = {3,5,8,12},C = {8}.
(2)新華中學開運動會,設
A = {x | x是新華中學高一年級參加百米賽跑的同學},
B = {x | x是新華中學高一年級參加跳高比賽的同學},求A∩B.
例2 設平面內直線l1上點的集合為L1,直線l2上點的集合為L2,試用集合的運算表示l1,l2的位置關系. 學生上臺板演,老師點評、總結.
例1 解:(1)∵A∩B = {8},
∴A∩B = C.
(2)A∩B就是新華中學高一年級中那些既參加百米賽跑又參加跳高比賽的同學組成的集合. 所以,A∩B = {x | x是新華中學高一年級既參加百米賽跑又參加跳高比賽的同學}.
例2 解:平面內直線l1,l2可能有三種位置關系,即相交于一點,平行或重合.
(1)直線l1,l2相交于一點P可表示為 L1∩L2 = {點P};
(2)直線l1,l2平行可表示為
L1∩L2 = ;
(3)直線l1,l2重合可表示為
L1∩L2 = L1 = L2. 提升學生的動手實踐能力.
歸納總結 并集:A∪B = {x | x∈A或x∈B}
交集:A∩B = {x | x∈A且x∈B}
性質:①A∩A = A,A∪A = A,
②A∩ = ,A∪ = A,
③A∩B = B∩A,A∪B = B∪A. 學生合作交流:回顧→反思→總理→小結
老師點評、闡述 歸納知識、構建知識網絡
課后作業 1.1第三課時 習案 學生獨立完成 鞏固知識,提升能力,反思升華
備選例題
例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.
【解析】法一:∵A∩B = {–2},∴–2∈B,
∴a – 1 = –2或a + 1 = –2,
解得a = –1或a = –3,
當a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.
當a = –3時,A = {–1,10,6},A不合要求,a = –3舍去
∴a = –1.
法二:∵A∩B = {–2},∴–2∈A,
又∵a2 + 1≥1,∴a2 – 3 = –2,
解得a =±1,
當a = 1時,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.
當a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.
例2 集合A = {x | –1
(1)若A∩B = ,求a的取值范圍;
(2)若A∪B = {x | x0,則冪函數的圖象通過原點,并在區間[0,+∞)上是增函數,
(3)如果a<0,則冪函數在(0,+∞)上是減函數,在第一區間內,當x從右邊趨向于原點時,圖象在y軸右方無限地趨近y軸;當x趨向于+∞,圖象在x軸上方無限地趨近x軸。
5通過觀察例1,在冪函數y=xa中,當a是(1)正偶數、(2)正奇數時,這一類函數有哪種性質?
學生思考,教師講評:(1)在冪函數y=xa中,當a是正偶數時,函數都是偶函數,在第一象限內是增函數。(2)在冪函數y=xa中,當a是正奇數時,函數都是奇函數,在第一象限內是增函數。
例3鞏固練習 寫出下列函數的定義域,并指出它們的奇偶性和單調性:①y=x ②y=x ③y=x 。
例4簡單應用1:比較下列各組中兩個值的大小,并說明理由:
①0.75 ,0.76 ;
②(-0.95) ,(-0.96) ;
③0.23 ,0.24 ;
④0.31 ,0.31
例5簡單應用2:冪函數y=(m -3m-3)x 在區間 上是減函數,求m的值。
例6簡單應用2:
已知(a+1)<(3-2a) ,試求a的取值范圍。
課堂小結
今天的學習內容和方法有哪些?你有哪些收獲和經驗?
1、 冪函數的概念及其指數函數表達式的區別 2、 常見冪函數的圖象和冪函數的性質。
布置作業:
課本p.73 2、3、4、思考5
關于高一數學的教學計劃 篇4
、
Ⅰ.教學內容解析
本節課的教學內容,是指數函數的概念、性質及其簡單應用.教學重點是指數函數的圖像與性質.
這是指數函數在本章的位置.
指數函數是學生在學習了函數的概念、圖象與性質后,學習的第一個新的初等函數.它是一種新的函數模型,也是應用研究函數的一般方法研究函數的一次實踐.指數函數的學習,一方面可以進一步深化對函數概念的理解,另一方面也為研究對數函數、冪函數、三角函數等初等函數打下基礎.因此,本節課的學習起著承上啟下的作用,也是學生體驗數學思想與方法應用的過程.
指數函數模型在貸款利率的計算以及考古中年代的測算等方面有著廣泛地應用,與我們的日常生活、生產和科學研究有著緊密的聯系,因此,學習這部分知識還有著一定的現實意義.
Ⅱ.教學目標設置
1.學生能從具體實例中概括指數函數典型特征,并用數學符號表示,建構指數函數的概念.
2.學生通過自主探究,掌握指數函數的圖象特征與性質,能夠利用指數函數的性質比較兩個冪的大小.
3.學生運用數形結合的思想,經歷從特殊到一般、具體到抽象的研究過程,體驗研究函數的一般方法.
4.在探究活動中,學生通過獨立思考和合作交流,發展思維,養成良好思維習慣,提升自主學習能力.
Ⅲ.學生學情分析
授課班級學生為南京師大附中實驗班學生.
1.學生已有認知基礎
學生已經學習了函數的概念、圖象與性質,對函數有了初步的認識.學生已經完成了指數取值范圍的擴充,具備了進行指數運算的能力.學生已有研究一次函數、二次函數等初等函數的直接經驗.學生數學基礎與思維能力較好,初步養成了獨立思考、合作交流、反思質疑等學習習慣.
2.達成目標所需要的認知基礎
學生需要對研究的目標、方法和途徑有初步的認識,需要具備較好的歸納、猜想和推理能力.
3.難點及突破策略
難點:1. 對研究函數的一般方法的認識.
2. 自主選擇底數不當導致歸納所得結論片面.
突破策略:
1.教師引導學生先明確研究的內容與方法,從總體上認識研究的目標與手段.
2.組織匯報交流活動,展現思維過程,相互評價,相互啟發,促進反思.
3.對猜想進行適當地證明或說明,合情推理與演繹推理相結合.
Ⅳ.教學策略設計
根據學生已有學習基礎,為提升學生的學習能力,本節課的教學,采用自主學習方式.通過教師引領學生經歷研究函數及其性質的過程,認識研究的目標與策略,在研究的過程中逐漸完善研究的方法與手段.
學生的自主學習,具體落實在三個環節:
(1)建構指數函數概念時,學生自主舉例,歸納特征,并用符號表示,討論底數的取值范圍,完善概念.
(2)探究指數函數圖象特征與性質時,學生自選底數,開展自主研究,并通過匯報交流相互提升.
(3)性質應用階段,學生自主舉例說明指數函數性質的應用.
研究函數的性質,可以從形和數兩個方面展開.從圖形直觀和數量關系兩個方面,經歷從特殊到一般、具體到抽象的過程。借助具體的指數函數的圖象,觀察特征,發現函數性質,進而猜想、歸納一般指數函數的圖象特征與性質,并適時應用函數解析式輔以必要的說明和證明.
Ⅴ.教學過程設計
1.創設情境建構概念
師:我們已經學習了函數的概念、圖象與性質,大家都知道函數可以刻畫兩個變量之間的關系.你能用函數的觀點分析下面的例子嗎?
師:大家知道細胞分裂的規律嗎?(出示情境問題)
[情境問題1]某細胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,……如果細胞分裂x次,相應的細胞個數為y,如何描述這兩個變量的關系?
[情境問題2]某種放射性物質不斷變化為其他物質,每經過一年,這種物質剩余的質量是原來的84%.如果經過x年,該物質剩余的質量為y,如何描述這兩個變量的關系?
[師生活動]引導學生分析,找到兩個變量之間的函數關系,并得到解析式y=2x和y=0.84x.
師:這樣的函數你見過嗎?是一次函數嗎?二次函數?這樣的函數有什么特點?你能再舉幾個例子嗎?
〖問題1類似的函數,你能再舉出一些例子嗎?這些函數有什么共同特點?能否寫成一般形式?
[設計意圖]通過列舉生活中指數函數的具體例子,感受指數函數與實際生活的聯系.引導學生從具體實例中概括典型特征,初步形成指數函數的概念,并用數學符號表示.初步得到y=ax這個形式后,引導學生關注底數的取值范圍,完成概念建構.指數范圍擴充到實數后,關注x∈R時,y=ax是否始終有意義,因此規定a>0.a≠1并不是必須的,常函數在高等數學里是基本函數,也有重要的意義.為了使指數函數與對數函數能構成反函數,規定a≠1.此處不需對此解釋,只要補充說“1的任何次方總是1,所以通常還規定a≠1”.
[師生活動]學生舉例,教師引導學生觀察,其共同特點是自變量在指數位置,從而初步建立函數模型y=ax.
[教學預設]學生能舉出具體的例子——y=3x,y=0.5x….如出現y=(-2)x最好,更便于引發對a的討論,但一般不會出現.進而提出這類函數一般形式y=ax.
方案1:
生:(舉例)函數y=3x,y=4x,…(函數y=ax(a>1))
師:板書學生舉例(稍停頓),能舉一個不太一樣的例子嗎?(提示:底數非得大于1嗎?)
生:函數y=0.5x,y= x,y=(-2)x,y=1x…
師:板書學生舉例(停頓),好像有不同意見.
生:底數不能取負數.
師:為什么?
生:如果底數取負數或0,x就不能取任意實數了.
師:我們已經將指數的取值范圍擴充到了R,我們希望這些函數的定義域就是R.
(若沒有學生注意到底數的取值范圍,可引導學生關注例舉函數的定義域.若有同學提出情境中函數的定義域應為N+,師:我們已經將指數的取值范圍擴充到了R,函數y=2x和y=0.84x中,能否將定義域擴充為R?你們所舉的例子中,定義域是否為R?)
師:這些函數有什么共同特點?
生:都有指數運算.底數是常數,自變量在指數位置.
(若有學生舉出類似y=max的例子,引導學生觀察,它依然具有自變量在指數位置的特征.而刻畫這一特點的最簡單形式就是y=ax,從而初步建立函數模型y=ax,初步體會基本初等函數的作用.)
師:具備上述特征的函數能否寫成一般形式?
生:可以寫成y=ax(a>0).
師:當a=1時,函數就是常數函數y=1.對于這個函數,我們已經比較了解了.通常我們還規定a≠1.今天我們就來了解一下這個新函數.(出示指數函數定義)
方案2:
生:(舉例)函數y=3x,y=4x,…(函數y=ax(a>1))
師:板書學生舉例(稍停頓),能舉一個不太一樣的例子嗎?(提示:底數非得大于1嗎?)
生:函數y=0.5x,y= x,…
師:這些函數的自變量是什么?它們有什么共同特點?
生:(可用文字語言或符號語言概括)都有指數運算.底數是常數,自變量在指數位置.可以寫成y=ax.
師:y=ax中,自變量是x,底數a是常數.以上例子的不同之處,是底數不同.那你覺得底數的取值范圍是什么呢?
生:底數不能取負數.
師:為什么?
生:如果底數取負數或0,x就不能取任意實數了.
師:為了研究的方便,我們要求底數a>0.當a=1時,函數就是常數函數y=1.對于這個函數,我們已經比較了解了.通常我們還規定a≠1.今天我們就來了解一下這個新函數.(出示指數函數定義)
[階段小結]一般地,函數y=ax(a>0且a≠1)稱為指數函數.它的定義域是R.
[意圖分析]概念教學應當讓學生感受形成過程,了解知識的來龍去脈,那種直接拋出定義后輔以“三項注意”的做法剝奪了學生參與概念形成的過程.此處不宜糾纏于y=22x是否為指數函數等細枝末節.指數函數的基本特征是自變量出現在指數上,應促使學生對概念本質的理解.指數函數概念的形成,經歷了一個由粗到細,由特殊到一般,由具體到抽象的漸進過程,這樣更加符合人們的認知心理.
2.實驗探索匯報交流
(1)構建研究方法
師:我們定義了一個新的函數,接下來,我們研究什么呢?
生:研究函數的性質.
〖問題2你打算如何研究指數函數的性質?
[設計意圖]學生已經學習了函數的概念、函數的表示方法與函數的一般性質,對函數有了初步的認識.在此認知基礎上,引導學生自己提出所要研究的問題,尋找研究問題的方法.開始的問題較寬泛,教師要縮小問題范圍,用提示語口頭提問啟發.教師應充分尊重學生的思維個性,提供自主探究的平臺,通過匯報交流活動達成共識實現殊途同歸.中學階段,特別是高一新授課階段,提倡學生以形象思維作為抽象思維的支撐.
[師生活動]師生經過討論,解決啟發性提示問題,確定研究的內容與方法.
[教學預設]學生能夠根據已有知識和經驗,在教師的啟發引導下,明確研究的內容以及研究的方法.部分學生會提出先作出具體函數圖象,觀察圖象,概括性質,并進而歸納出一般函數的圖象的分布特征等性質.另一部分學生可能從具體函數的解析式出發,研究函數性質,猜想一般函數的性質,然后再作出圖象加以驗證.
師:(稍等片刻)我們一般要研究哪些性質呢?
生:變量取值范圍(定義域、值域)、單調性、奇偶性.
師:(板書學生回答)怎樣研究這些性質呢?
生:先畫出函數圖象,觀察圖象,分析函數性質.
生:先研究幾個具體的.指數函數,再研究一般情況.
師:板書“畫圖觀察”,“取特殊值”
(若沒有學生提出從特殊到一般的思路.師:底數a的取值不同,函數的性質可能也會有不同.一次函數y=kx(k≠0)中,一次項系數k不同,函數性質就不同.底數a可以取無數多個值,那我們怎么辦呢?)
(若有學生通過對y=2x解析式的分析,得到了性質,并提出從具體函數的解析式出發,研究函數性質,猜想一般函數的性質,然后再作出圖象加以驗證.師:你的想法也很有道理,不妨試一試.(仍引導學生從具體指數函數圖象入手.))
[意圖分析]學習的過程就是一個不斷地提出問題、解決問題的過程.提出問題比解決問題更重要,給學生提供由自己提出問題、確定研究方法的機會,逐漸學會研究問題,促進能力發展.
(2)自主探究匯報交流
師:我們確定了要研究的對象和具體做法,下面可以開始研究指數函數的性質了.
〖問題3選取數據,畫出圖象,觀察特點,歸納性質.
[設計意圖]若直接規定底數取值,對于為什么要以y=2x,y=3x,y=0.5x為例,為什么要根據底數的大小分類討論,缺乏合理的解釋,學生對于圖象的認識是被動的.若在探究前經討論確定底數取值,由于學生認知水平的差異,仍可能會造成部分學生被動接受.學生自主選擇底數,雖有得到片面認識的可能,但通過討論交流,學生能相互驗證結論,仍能得到正確認識.并且學生能在過程中體會數據如何選擇,了解研究方法.
由于描點作圖時列舉點的個數的限制,學生對x→∞時函數圖象特征缺乏直觀感受.而且由于所舉例子個數的限制,學生對于歸納的結論缺乏一般性的認識.教師應利用繪圖軟件作出底數連續變化的圖象 ,驗證猜想.
數形結合、從特殊到一般的思維方法是概括歸納抽象對象的一般思維方法,本節課的重點是通過對指數函數圖象性質的研究,總結研究函數的一般方法,應充分發動學生參與研究的每個過程,得到直接體驗.
[師生活動]學生選取不同的a的值,作出圖象,觀察它們之間的異同,總結指數函數的圖象特征與函數性質.
[教學預設]學生通過觀察圖象,發現指數函數y=ax(a>0且a≠1)的性質.教師用實物投影儀展示學生所畫圖象,學生根據具體函數圖象說明具體函數性質.在學生說明過程中,教師引導學生對結論進行適當的說明,進而引導學生歸納一般指數函數的性質.教師引導學生關注列表描點作圖的過程,引導學生通過反思過程,并通過動態圖象驗證猜想,促進學生體會數形結合的分析方法.教師尊重生成,但需引導學生區別指數函數本身的性質與指數函數之間的性質.其中⑥⑦不強加于學生.對于⑥,要引導學生在同一坐標系中畫出圖象,啟發學生觀察底數互為倒數的指數函數的圖象,先得到具體的例子.對于⑦,在例1第3小題中,會有學生提出利用不同底數指數函數圖象解決,可順勢利導,也可布置為課后作業,繼續研究.
生:自主選擇數據,在坐標紙上列表作圖,列出函數性質.
師:(巡視,必要時參與討論,及時提示任務,待大部分學生有結論后,鼓勵學生交流,請學生匯報.)有條理地整理一下結論,討論交流所得.(同時用實物投影儀展示學生所畫圖象.若沒有投影儀,用幾何畫板作出圖象.)
生:(可能出現的情況)(1)在兩個坐標系中畫圖;(2)所取底數均大于1;(3)兩個底數大于1,一個底數小于1;(4)關于y軸對稱的兩個指數函數.
師:(過程性引導)底數你是怎么取的?你是怎樣觀察出結論的?在列表過程中,你有什么發現嗎?為什么要在兩個坐標系中畫圖?為什么不也取兩個底數小于1?
師:(用彩筆描粗圖象,故意出錯)錯在哪里?為什么?
生:指數函數是單調遞增的,過定點(0, 1).
師:(引導學生規范表述,并板書)指數函數在(-∞, +∞)上單調遞增,圖象過定點(0, 1).
師:指數函數還有其它性質嗎?
師:也就是說值域為(0, +∞).
生:指數函數是非奇非偶函數.
師:有不同意見嗎?
生:當0
(其它預設:
(1)當a>1時,若x>0,則y>1;若x1.
(2)學生畫出y=2x和y=3x圖象,得出函數遞增速度的差異.
(3)畫出y=2x和y=0.5x圖象,得到底數互為倒數的指數函數圖象關于y軸對稱.)
師:(板書學生交流結果,整理成表格.注意區分“函數性質”與“函數之間的關系”.若有學生試圖說明結論的合理性,可提供機會.)大家認為底數a>1或0
[階段小結] 指數函數y=ax(a>0且a≠1)具有以下性質:
①定義域為R.
②值域為(0, +∞).
③圖象過定點(0, 1).
④非奇非偶函數.
⑤當a>1時,函數y=ax在(-∞, +∞)上單調遞增;
當0
⑥函數y=ax與y=x (a>0且a≠1)圖象關于y軸對稱.
⑦指數函數y=ax與y=bx(a>b)的圖象有如下關系:
x∈(-∞, 0)時,y=ax圖象在y=bx圖象下方;
x=0時,兩圖象相交;
x∈(0,+∞)時,y=ax圖象在y=bx圖象上方.
[意圖分析]通過探究活動,使學生獲得對指數函數圖象的直觀認識.學生觀察圖象,是對圖形語言的理解;根據圖象描述性質,是將圖形語言轉化為符號或文字語言.對函數的理解,是建立在三種語言相互轉化的基礎上的.在交流匯報過程中,一方面要通過對探究較深入學生的具體研究過程的剖析,總結提升學習方法,優化學習策略;另一方面要關注部分探究意識與能力都薄弱的學生的表現,鼓勵他們大膽發言,激勵他們主動參與活動,讓全體學生成為真正的學習主體.自主探究活動能充分激發學生的相互學習能力,能有效幫助學生突破難點.
3.新知運用鞏固深化
(方案一)(分析函數性質的用途)
師:現在我們了解了指數函數的定義和性質,它們有什么用處呢?
師:函數的定義域是函數的基礎,是運用性質的前提.值域是研究函數最值的前提.具備奇偶性的函數,可以利用對稱性簡化研究.指數函數過定點(0, 1),說明可以將常數1轉化為指數式,即1=20=30=…那么函數單調性有什么用呢?
生:可以求最值,可以比較兩個函數值的大小.
師:那你能舉出運用指數函數單調性比大小的例子嗎?(提示:既然是運用指數函數單調性,那應該有指數式.)
生:(舉例并判斷大小.)
師:你考察了哪個指數函數?怎么想到的?(規范表述)
師:以往我們計算出冪的值來比大小,現在我們指數函數的單調性,不用計算就可以比較兩個冪的大小.(出示例1)
(方案二)
師:現在我們了解了指數函數的定義和性質,它們有什么用處呢?
師:(口述并板書)你能比較32與33的大小嗎?
生:直接計算比較.
師:那比較30.2與30.3的大小呢?能不能不計算呢?
生:利用函數y=3x的單調性.
師:能具體說明嗎?(引導學生規范表達)我們再試一試.
(出示例1)
【例1】比較下列各組數中兩個值的大小:
①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.
[設計意圖] 引導學生運用指數函數性質.對于 32與33的大小比較,學生更可能計算出冪的值直接比較.變式后,學生可能作差或作商比較,轉化為比較30.1與1的大小,進而運用指數函數單調性,也可能直接運用單調性.初步運用新知解決問題,注重題意理解,擴大知識遷移,感悟解題方法,達到對新知鞏固記憶,加深理解.
[師生活動]學生板演,教師組織學生點評.
[教學預設] ①②兩題,學生能運用指數函數單調性解決.②題學生可能得到錯誤答案,教師可組織相互點評,規范表達,正確運用性質.③學生可能運用不同方法,應給予充分的時間,并在具體問題解決后引導學生總結一般方法.
師:(引導學生規范表達)你考察了哪個指數函數?根據函數的什么性質?
師:(對③的引導)你考慮利用哪個函數?是y=1.5x還是y=0.8x?這兩個函數有什么關聯?(引導學生畫出圖象,從形上提示:圖象有什么關聯?)
生:它們都過點(0, 1).
師:也就是說,可以將1轉化為指數形式,即1=1.50=0.80.那接下來呢?
生:比較1.50.3,0.81.2和1的大小.
師:我們找到了一個比大小的中間量.以往我們計算出冪的值來比大小,現在我們指數函數的單調性,不用計算就可以比較兩個冪的大小.
【例2】
①已知3x≥30.5,求實數x的取值范圍;
②已知0.2x12 則 x>16
( 4 )若3x>12則 x>4
【設計意圖】(1)、(2)小題喚起對舊知識等式的基本性質的回憶,(3)、(4)小題引導學生大膽說出自己的想法。通過復習既找準了舊知停靠點,又創設了一種情境,給學生提供了類比、想象的空間,為后續學習做好了鋪墊。
溫故知新
問題1.由等式性質1你能猜想一下不等式具有什么樣的性質嗎?
等式性質1:等式兩邊都加上或減去同一個數(或同一個整式),所得結果仍是不等式。
估計學生會猜:不等式兩邊都加上或減去同一個數(或同一個整式),所得結果仍是不等式。教師引導:“=”沒有方向性,所以可以說所得結果仍是等式,而不等號:“>,b經過怎樣的變形得到的,應該應用不等式的哪條基本性質。由學生思考后口答。
【設計意圖】對學生進行推理訓練,讓學生明白,敘述要有根據,進一步提高學生的邏輯思維能力和語言表達能力。
2、你認為在運用不等式的基本性質時哪一條性質最容易出錯,應該怎樣記住?
【設計意圖】及時進行學習反思,總結經驗,通過相互評價學習效果,及時發現問題、解決知識盲點,培養學生的創新精神和實踐能力。
3.小明的困惑:
小明用不等式的基本性質將不等式m>n進行變形,兩邊都乘以4,4m>4n,兩邊都減去4m, 0>4n-4m,即0>4(n-m),兩邊都除以(n-m),得0>4,0怎么會大于4呢?
小明可糊涂了……聰明的同學,你能告訴小軍他究竟錯在什么地方嗎?同桌討論。
【設計意圖】通過替人排憂解難,強化對不等式三個基本性質的理解與運用,突出重點,突破難點。
4.火眼金睛
①a>2, 則3a___2a
②2a>3a,則 a ___ 0
【設計意圖】通過變式訓練,加深學生對新知的理解,培養學生分析、探究問題的能力。
課堂小結:
這節課你有哪些收獲?有何體會?你認為自己的表現如何?教師引導學生回顧、思考、交流。
【設計意圖】回顧、總結、提高。學生自覺形成本節的課的知識網絡。
思考題:你來決策
咱們班的王帥同學準備在五、一期間和他的爸爸、媽媽外出旅游。青年旅行社的標準為:大人全價,小孩半價;方正旅行社的標準為:大人、小孩一律八折。若兩家旅行社的基本價一樣,你能幫王帥同學考慮一下選擇哪家旅行社更合算嗎?
【設計意圖】利用所學的數學知識,解決生活中的問題,加強數學與生活的聯系,體驗數學是描述現實世界的重要手段。既培養了學生用數學知識解決實際問題的能力,又樹立了學好數學的信心。
關于高一數學的教學計劃 篇5
數學是研究現實世界空間形式和數量關系的一門科學。
一、指導思想
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎知識和基本技能的教學,注意參透教學思想和方法,針對學生實際,不斷研究數學教學,改進教法,指導學法。
數學目標要求:
1、理解集合及充要條件的有關知識,掌握不等式的性質,一元二次不等式、絕對值不等的解法,掌握函數的概念及指數函數,對函數和幕函數的性質和圖象。
2、理解角的概念的推廣和三角函數的定義,掌握基本的三角函數公式和三角函數巔峰性質、圖像,理解三角函數的周期性
3、理解數列的概念,掌握等差數列和等比數列的性質,并會求等差數列、等比數列前n項的和。
4、掌握平面向量時有關概念和運算,掌握直線和圓的方程的求法。
5、掌握空間幾何直線、平面之間的位置關系及其判定方法。
6、掌握概率與統計初步里的計數原理,理解三種抽樣方法,會求簡單問題的概率。
二、教學建議
1、深入鉆研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練掌握知識和邏輯體系,細致領悟教材改革的精髓,逐步明確教材教學形式,內容和教學目標的影響。
2、準確吧握新大綱。新大綱修改了部分內容的教學要求層次,把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上要重視數學應用;重視教學思想方法的參透。
3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施材,以學生為賬戶提,構建新的認識體系,營造有利于學生的氛圍。
4、發揮教材的多種教學功能。用好章頭圖,激發學生學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的學,讓學生感受社會生活之所需;小結和復習是培養學生自學的好材料。
5、加強課堂研究,科學設計教學方法。根據教材的內容和特征,實行啟發式和討論式教學。職業高中數學教學計劃職業高中數學教學計劃。發揚教學民主,師生雙方親切合作,交流互動,讓學生感受、理解知識的產生和發展的過程。根據材料個章節的重難點制定教學專題,積累教學經驗。
6、落實課外活動內容,組織和加強數學興趣小組的活動內容,加強對高層次學生的競賽輔導,培養拔尖人才。
三、教學進度(略)
最后,希望小編整理的高一年級數學教學計劃對您有所幫助,祝同學們學習進步。
關于高一數學的教學計劃 篇6
本學期我擔任高一班的數學教學,由于學生剛由小學升入初中,好多的習慣還不規范,導致學習水平參差不齊,為了能順利完成本學期的教學任務,特制定教學計劃如下:
一、本學期學情分析:
本學期教學內容與現實生活聯系非常密切,知識的綜合性也較強,教材為學生動手操作,歸納猜想提供了可能。觀察、思考、實驗、想一想、試一試、做一做等,給學生留有思考的空間,讓學生能更好地自主學習。因此對每一章的教學都要體現師生交往、互動、共同發展的過程。要求老師成為學生數學學習的組織者和引導者,從學生的生活經驗和已有的知識背景出發,在活動中激發學生的學習潛能,促使學生在自主探索與合作交流的過程中真正理解和掌握基本數學知識、技能、思想、方法,提高解決問題的能力。開學第一周我對學生的觀察和了解中發現少部分學生基礎還可以,而大部分學生基礎和能力比較差。所以一定要想方設法,鼓勵他們增強信心,改變現狀。在扎實基礎上提高他們解題的基本技能和技巧。
二、教學計劃:
(一)掌握學生心理特征,激發他們學習數學的積極性。
學生由小學進入中學,心理上發生了較大的變化,開始要求“獨立自主”,但學生環境的更換并不等于他們已經具備了中學生的諸多能力。因此對學習道路上的困難估計不足。鑒于這些心理特征,教師必須十分重視激發學生的求知欲,有目的地時時地向學生介紹數學在日常生活中的應用,還要想辦法讓學生親身體驗生活離開數學知識將無法進行。從而激發他們學習數學知識的直接興趣,數學第一章內容的正確把握能較好地做到這些。
(二)努力提高課堂45分鐘效率
(1)在教師這方面,首先做到要通讀教材,駕奴教材,認真備課,認真備學生,認真備教法,對所講知識的每一環節的過渡都要精心設計。給學生出示的問題也要有層次,有梯度,哪些是獨立完成的,哪些是小組合作完成的,知識的達標程度教師更要掌握。同時作業也要分層次進行,使優生吃飽,差生吃好。
(2)重視學生能力的培養
初一的數學是培養學生運算能力,發展思維能力和綜合運用知識解決實際問題的能力,從而培養學生的創新意識。根據當前素質教育和新課改的的精神,在教學中著重對學生進行上述幾方面能力的培養。充分發揮學生的主體作用,盡可能地把學生的潛能全部挖掘出來。
(三)加強對學生學法指導
進入中學,有些學生縱然很努力,成績依舊上不去,這說明中學階段問題已成為突出問題,這就要求學生必須掌握知識的內存規律,不僅要知其然,還要知其所以然,以逐步提高分析、判斷、綜合、歸納的解題能力,我要求學生養成先復習,后做作業的好習慣。課后注意及時復習鞏固以及經常復習鞏固,能使學過的知識達到永久記憶,遺忘緩慢。
三、加強集體備課:
與本組的其他教師加強集體備課,突顯集體的優勢,作到進度統一。
關于高一數學的教學計劃 篇7
一、具體目標:
1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。經過不一樣形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2、提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本本事。
3、提高數學地提出、分析和解決問題(包括簡單的實際問題)的本事,數學表達和交流的本事,發展獨立獲取數學知識的本事。
4、發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出確定。
5、提高學習數學的興趣,樹立學好數學的信心,構成鍥而不舍的鉆研精神和科學態度。
6、具有必須的數學視野,逐步認識數學的科學價值、應用價值和文化價值,構成批判性的思維習慣,崇尚數學的理性精神,體會數學……
二、本學期要到達的教學目標
1、雙基要求:
在基礎知識方面讓學生掌握高一有關的概念、性質、法則、公式、定理以及由其資料反映出來的數學思想和方法。在基本技能方面能按照必須的程序與步驟進行運算、處理數據、能使用計數器及簡單的推理、畫圖。
2、本事培養:
能運用數學概念、思想方法,辨明數學關系,構成良好的思維品質;會根據法則、公式正確的進行運算、處理數據,并能根據問題的情景設計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關學科、生產和生活的數學問題,并進行交流,構成數學的意思;從而經過獨立思考,會從數學的角度發現和提出問題,進行探索和研究。
3、思想教育:
培養高一學生,學習數學的興趣、信心和毅力及實事求是的科學態度,勇于探索創新的精神,及欣賞數學的美學價值,并懂的數學來源于實踐又反作用于實踐的觀點;數學中普遍存在的對立統一、運動變化、相互聯系、相互轉化等觀點。
三、進度授課計劃及進度表
略。