化學報告范文(通用3篇)
化學報告范文 篇1
實驗目的:
1. 學習從醇制備溴乙烷的原理和方法
2. 鞏固蒸餾的操作技術和學習分液漏斗的使用。
實驗原理:
主要的副反應:
實驗步驟及現象記錄:
實 驗 步 驟現 象 記 錄
1. 加料:
將9.0ml水加入100ml圓底燒瓶, 在冷卻和不斷振蕩下,慢慢地加入19.0ml濃硫酸。冷至室溫后,再加入10ml95%乙醇,然后在攪拌下加入13.0g研細的溴化鈉,再投入2-3粒沸石。
放熱,燒瓶燙手。
2. 裝配裝置,反應:
裝配好蒸餾裝置。為防止產品揮發損失,在接受器中加入5ml 40%nahso3溶液,放在冰水浴中冷卻,并使接受管(具小咀)的末端剛好浸沒在接受器的水溶液中。用小火加熱石棉網上的燒瓶,瓶中物質開始冒泡,控制火焰大小,使油狀物質逐漸蒸餾出去,約30分鐘后慢慢加大火焰,直到無油滴蒸出為止。
加熱開始,瓶中出現白霧狀hbr。稍后,瓶中白霧狀hbr增多。瓶中原來不溶的固體逐漸溶解,因溴的生成,溶液呈橙黃色。
3. 產物粗分:
將接受器中的液體倒入分液漏斗中。靜置分層后,將下層的粗制溴乙烷放入干燥的小錐形瓶中。將錐形瓶浸于冰水浴中冷卻,逐滴往瓶中加入濃硫酸,同時振蕩,直到溴乙烷變得澄清透明,而且瓶底有液層分出(約需4ml濃硫酸)。用干燥的分液漏斗仔細地分去下面的硫酸層,將溴乙烷層從分液漏斗的上口倒入30ml蒸餾瓶中。
接受器中液體為渾濁液。分離后的溴乙烷層為澄清液。
4. 溴乙烷的精制
配蒸餾裝置,加2-3粒沸石,用水浴加熱,蒸餾溴乙烷。收集37-40℃的餾分。收集產品的接受器要用冰水浴冷卻。無色液體,樣品+瓶重=30.3g,其中,瓶重20.5g,樣品重9.8g。
5.計算產率。
理論產量:0.126109=13.7g
產 率:9.8/13.7=71.5%
結果與討論:
(1)溶液中的橙黃色可能為副產物中的溴引起。
(2)最后一步蒸餾溴乙烷時,溫度偏高,致使溴乙烷逸失,產量因而偏低,以后實驗應嚴格操作。
化學實驗報告范文之溴乙烷的合成實驗的總結,在上面文章中我已經為同學們帶來了整理。希望你在學習化學的時候,好好利用我們帶來的實驗格式。
化學報告范文 篇2
1實驗目的:探究醋酸能否與碳酸鈣反應
2實驗器材:食醋適量,帶有水垢的熱水瓶
3實驗步驟:
a將適量醋酸倒入有水垢的水瓶中
b振蕩并靜置一會,使其充分反應
c打開瓶塞,(現象)發現水垢消失,即水垢中的碳酸鈣能與食醋中的醋酸反應,被溶解了。
4實驗方程式:2ch3cooh+caco3=(ch3coo)2ca+h2o+co2↑
5實驗結論:醋酸能與碳酸鈣反應。由方程式還可得,生成醋酸鈣、水和二氧化碳
化學報告范文 篇3
1、石油化工的含義
石油化學工業簡稱為石油化工,是化學工業的主要組成部分,是指以石油和天然氣為原料,生產石油產品和石油華工產品懂得加工工業。石油產品又稱油品,主要包括各種燃料油(汽油煤油柴油)和潤滑油液化石油氣石油焦碳石蠟瀝青等
2、石油化工的發展
石油化工的發展與石油煉制工業與以煤為基本原料生產化工產品及三大合成材料的發展有關。起源于19世紀20xx年代石油煉制的開始;20世紀20xx年代的汽車工業發展帶動汽油的生產;40年代催化裂化工藝的進一步開發形成破具規模的石油煉制工藝;50年代裂化技術及乙烯的制取為石油化工提供大量原料;二戰后石油化工得到更進一步的發展;70年代后原由價格上漲石油發展的速度下降。因此對新工藝的開發新技術的使用節能優化等的綜合利用成為必然趨勢。
3、石油化工的重大意義
石油化工作為我國的支柱產業,在國民經濟中占有極高的地位。石油化工是燃料的主要供應者,是材料產業(包括合成材料有機合成化工原料)的支柱之一;促進農業的發展,如肥料制取塑料薄膜的推廣及農藥的使用等;對各工業部門起著至關重要的作用,如為我們提供汽油煤油柴油重油煉廠氣等燃料,成為交通業(提供燃料)建材工業(提供塑料管道涂料等建材)及輕工紡織工業等領域。
石化行業是技術密集型產業,生產方法和生產工藝的確定關鍵設備的選型選用制造等一系列技術,都要求由專有或獨特的技術標準所規定。因此只有加強基礎學科尤其是有機化學,高分子化學,催化,化學工程,電子計算機和自動化等方面的研究,加強相關技術人員的培養,使之掌握和采用先進的科研成果,在配合相關的工程技術,石油化工行業才可能不斷發展登上新臺階。
二、武漢石化廠簡介
中國石化武漢石油化工廠始建于1971年。現有固定資產16億元,煉油加工能力400萬噸/年,擁有15套煉油、化工裝置,為全國500家最大規模工業企業之一。黃鶴牌汽油、煤油、輕柴油、石腦油、硫磺、石油酸、聚丙烯、液化石油氣等16種石油化工產品,有十種產品采用了國際標準,八種產品榮獲部、省、市和國家優質產品稱號。
(一)主要裝置及流程
原油本身是由烴類和非烴類組成的復雜混合物,其直接利用價值較低,需要將其加工成汽油、煤油、柴油、潤滑油以及石油化工產品。原油蒸餾是原油加工的第一道工序,在煉油廠中占有非常重要的地位。
目前煉油廠常采用的原油蒸餾流程是雙塔流程或三塔流程。雙塔流程包括常壓蒸餾和減壓蒸餾,三塔流程包括原油初餾、常壓蒸餾和減壓蒸餾。大型煉油廠一般采用三塔流程。
依據原油加工成產品的用途不同,原油的蒸餾工藝流程大致可分為三類:①燃料型,以生成汽油、煤油、柴油、減壓餾分油以及重質燃料油為主;②燃料-潤滑油型,以生成汽油、煤油、柴油、減壓餾分油以及重質燃料油為主,對減壓餾分油的分離精度要求較高,減壓塔側線餾分的餾程相對較窄;③化工型,以生成汽油、煤油、柴油、減壓餾分油以及重質燃料油為主,汽油、煤油和部分柴油用作裂解原料,因此其分離精度要求較低。
上述三種類型的原油蒸餾流程基本相同,下面以燃料型來介紹原油蒸餾的基本流程,包括原油初餾、常壓蒸餾和減壓蒸餾三部分
(1)原油初餾原油經過換熱,溫度達到80~120℃左右進行脫鹽、脫水(一般要求含鹽小于10mg/L,含水小于0.5wt%),再經換熱至210~250℃,此時較輕的組分已經氣化,氣液混合物一同進入初餾塔,塔頂分出輕汽油餾分,塔底為拔頭原油
(2)常壓蒸餾拔頭原油經過換熱、常壓爐加熱至360~370℃,油氣混合物一同進入常壓塔(塔頂壓力約為130~170KPa)進行精餾,從塔頂分出汽油餾分或重整餾分,從側線引出煤油、輕柴油和重柴油餾分,塔底是沸點高于350℃的常壓渣油。常壓蒸餾的主要作用是從原油中分離出沸點小于350℃的輕質餾分油
(3)減壓蒸餾常壓渣油經過減壓爐加熱至390~400℃后進入減壓塔,塔頂壓力一般為1~5KPa。減壓塔頂一般不出產品或者出少量產品(減頂油),各減壓餾分油從側線抽出,塔底是常壓沸點高于500℃的減壓渣油,集中了原油中絕大部分的膠質和瀝青質。減壓蒸餾的主要作用是從常壓渣油中分離出沸點低于500℃的重質餾分油和減壓渣油(二)主要煉油工藝簡介
A、聯合車間
(一)常壓蒸餾和減壓蒸餾
常壓蒸餾和減壓蒸餾習慣上合稱常減壓蒸餾,常減壓蒸餾基本屬物理過程。原料油在蒸餾塔里按蒸發能力分成沸點范圍不同的油品(稱為餾分),這些油有的經調合、加添加劑后以產品形式出廠,相當大的部分是后續加工裝置的原料,因此,常減壓蒸餾又被稱為原油的一次加工。包括三個工序:原油的脫鹽、脫水;常壓蒸餾;減壓蒸餾。
原油的脫鹽、脫水又稱預處理。從油田送往煉油廠的原油往往含鹽(主要是氯化物)、帶水(溶于油或呈乳化狀態),可導致設備的腐蝕,在設備內壁結垢和影響成品油的組成,需在加工前脫除。常用的辦法是加破乳劑和水,使油中的水集聚,并從油中分出,而鹽份溶于水中,再加以高壓電場配合,使形成的較大水滴順利除去。 催化裂化是在熱裂化工藝上發展起來的。是提高原油加工深度,生產優質汽油、柴油最重要的工藝操作。原料范主要是原油蒸餾或其他煉油裝置的350 ~ 540℃餾分的重質油,催化裂化工藝由三部分組成:原料油催化裂化、催化劑再生、產物分離。催化裂化所得的產物經分餾后可得到氣體、汽油、柴油和重質餾分油。有部分油返回反應器繼續加工稱為回煉油。催化裂化操作條件的改變或原料波動,可使產品組成波動。
催化重整(簡稱重整)是在催化劑和氫氣存在下,將常壓蒸餾所得的輕汽油轉化成含芳烴較高的重整汽油的過程。如果以80~180℃餾分為原料,產品為高辛烷值汽油;如果以60~165℃餾分為原料油,產品主要是苯、甲苯、二甲苯等芳烴,重整過程副產氫氣,可作為煉油廠加氫操作的氫源。重整的反應條件是:反應溫度為490~525℃,反應壓力為1~2兆帕。重整的工藝過程可分為原料預處理和重整兩部分。 加氫裂化是在高壓、氫氣存在下進行,需要催化劑,把重質原料轉化成汽油、煤油、柴油和潤滑油。加氫裂化由于有氫存在,原料轉化的焦炭少,可除去有害的含硫、氮、氧的化合物,操作靈活,可按產品需求調整。產品收率較高,而且質量好。 延遲焦化是在較長反應時間下,使原料深度裂化,以生產固體石油焦炭為主要目的,同時獲得氣體和液體產物。延遲焦化用的原料主要是高沸點的渣油。延遲焦化的主要操作條件是:原料加熱后溫度約500℃,焦炭塔在稍許正壓下操作。改變原料和操作條件可以調整汽油、柴油、裂化原料油、焦炭的比例。
原油一次加工和二次加工的各生產裝置都有氣體產出,總稱為煉廠氣。就組成而言,主要有氫、甲烷、由2個碳原子組成的乙烷和乙烯、由3個碳原子組成的丙烷和丙烯、由4個碳原子組成的丁烷和丁烯等。它們的主要用途是作為生產汽油的原料和石油化工原料以及生產氫氣和氨。發展煉油廠氣加工的前提是要對煉廠氣先分離后利用。煉廠氣經分離作化工原料的比重增加,如分出較純的乙烯可作乙苯;分出較純的丙烯可作聚丙烯等。
(二)、催化裂化裝置
催化裂化工藝在石油煉制工業中占有十分重要的地位,在技術和經濟上有許多優越性,是用于二次加工生產高質量燃料油的主要手段。
催化裂化裝置是煉油工業的核心裝置,與大乙烯裂解裝置、大化肥合成氨裝置同列為中國石化總公司的三大支柱裝置。從經濟效益看,它占總公司利稅的30%左右,從加工能力看,占總公司原油加工能力的1/3。
催化裂化裝置包括三大反應過程:反應再生過程、分餾過程、吸收穩定過程。
反應再生過程
催化裂化反應是指大分子的烴類在一定的溫度和壓力條件下,在微球催化劑的孔道內進行化學鍵的斷裂反應,從而生成小分子烴類(但同時也生成焦炭)的化學反應。包括重油催化與常規蠟油催化。催化裂化操作參數包括反應溫度、劑油比、原料預熱溫度、反應時間、再生催化劑含碳量等。
分餾過程
催化裂化反應油氣的分離是在分餾塔內完成的,反應油氣進入分餾塔的脫過熱段(人字擋板下),與人字擋板上下流的循環油漿逆流接觸,脫除過熱、洗滌油氣中夾帶的催化劑粉塵,并使反應油氣進行部分冷凝。首先冷凝的是沸點較高的油漿,上升的油氣混合物在塔內令其溫度逐漸降低,又出現部分冷凝,冷凝液為回煉油。再降低溫度使其逐漸部分冷凝為柴油,最后不能冷凝的是汽油、蒸氣及富氣。此時,在分餾塔底得到的是最高沸點餾分(油漿),塔側自下而上可取得回煉油、輕柴油餾分,自塔頂在油氣分離罐底可取得汽油餾分,在分離罐頂得到富氣組分。
吸收穩定過程
吸收是利用混合氣體中各組分在液體中的溶解度不同達到分離的目的,而分餾是利用液體混合物中各組分揮發度不同來進行分離的
催化裂化壓縮富氣吸收過程是在填料塔內進行,解吸分離是在板式塔內進行。在吸收塔內,貧吸收油自塔頂入塔后下行,與由塔最下層塔板進塔而上升的烴類混合氣體在塔板上進行多次氣、液逆向接觸,完成吸收過程。通過吸收和解吸操作,使吸收塔頂得到基本不含C3組分的氣體(再吸收塔頂為干氣);在解吸塔底得到基本不含C2的脫乙烷汽油。從而按C2、C3這兩種關鍵組分將其分離開來。
穩定塔
將液化氣(C3、C4)從脫乙烷汽油中分離出來的操作過程是在穩定塔中進行的。穩定塔操作是在壓力下精餾分離液態烴和汽油的過程。