夜夜躁爽日日躁狠狠躁视频,亚洲国产精品无码久久一线,丫鬟露出双乳让老爷玩弄,第一次3q大战的经过和结果

首頁 > 范文大全 > 工作總結 > 工作總結范文 > 初中數學活動總結(精選19篇)

初中數學活動總結

發布時間:2023-07-12

初中數學活動總結(精選19篇)

初中數學活動總結 篇1

  一直以來,在試卷講評課的上法上總存在著一些困惑。例如,試卷上的錯題因人而異,如何上能照顧到全體,將每位學生出錯的問題解決?通過這次培訓我認識到,我們沒有足夠的時間面面俱到的講解,在一定的時間內想面面俱到,那么每個題目也只是蜻蜓點水,一節課下來真正沉淀到頭腦中的知識寥寥無幾。今后的試卷講評課我打算按照下面的思路來上,請劉老師多批評指正。

  一、考試之后教師要做好測試分析,并充分備課。

  通過測試分析,首先,弄清學生集中出錯的題目,找出學生的共性問題,并針對這些共性的問題展開備課。備課要備學生出錯的原因,試卷講評時如何對這些問題講解與完善。其次,弄清每位學生的得分,對于成績波動大的同學通過談話等方式及時了解情況并幫助解決困難。

  二、下發試卷,學生自己糾錯。

  給學生自己糾錯的機會,將能自己改正或通過小組合作改正的題目在試卷講評前改過來。

  三、訂正答案,進一步改錯。

  給學生標準答案,在答案的引導下,學生進一步尋找解題思路,完善解題步驟,查找丟分原因,加深對知識的理解。

  四、重點題、錯題重點講解。

  經過兩輪的改錯之后學生存留下的問題已經很少,教師試卷講評時就要解決這些遺留問題、重點題、錯題。對于這些問題可以通過分類講解、同類知識串講、變式訓練、一題多解、多個知識點上串下聯等方式講透。經過尋根問底,可使學生對不明確的知識點加深理解,再認識,然后鞏固練習。這個過程下來同時可復習到多個知識點,建立知識體系,拓展學生思維。

  五、方法總結。

  圍繞一個知識點講解之后,要讓學生總結解題思想、方法,掌握答題技巧。需要時可讓學生簡記。

  六、解答疑問。

  通過學生提出疑問,大家共同解答,完善學生對知識的認識。

  近幾年教基礎年級,所以感覺上章節復習課較多,專題復習課很少。我們學校的章節復習課與劉老師的“出示問題,引出知識”是一致的。通過問題的解決實現知識點的復習。

  通過聽兩位韓老師的課我感覺有幾處大的收獲:

  一、要想實現高效課堂,教師首先高效備課。從兩位老師對題目的選取上能看到她們備課的用心。值得學習。

  二、充分放手給學生,讓學生思考、解決問題、總結方法。教師適時點撥。

  三、重要知識點、思想、方法及時簡記。“好腦子不如爛筆頭”,的確如此。根據艾賓浩斯的遺忘規律,一節課下來學到的知識點總在慢慢遺忘,如果課堂上不把關鍵點記錄下來的話,回過頭來復習時頭腦中的知識漏洞難以得到修繕。

  通過這次學習我感覺收獲很大,希望劉老師多組織類似活動幫助年輕教師成長。同時對于這次培訓的膚淺認識希望劉老師多批評指正。謝謝!

初中數學活動總結 篇2

  1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。

  2、菱形的性質:⑴矩形具有平行四邊形的一切性質;

  ⑵菱形的四條邊都相等;

  ⑶菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。

  ⑷菱形是軸對稱圖形。

  提示:利用菱形的性質可證得線段相等、角相等,它的對角線互相垂直且把菱形分成四個全等的直角三角形,由此又可與勾股定理聯系,可得對角線與邊之間的關系,即邊長的平方等于對角線一半的平方和。

  3、因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  4、因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④因式分解與整式乘法的關系:m(a+b+c)

  5、公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  6、公因式確定方法:①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。

  7、提取公因式步驟:①確定公因式。②確定商式③公因式與商式寫成積的形式。

  8、平方根表示法:一個非負數a的平方根記作,讀作正負根號a。a叫被開方數。

  9、中被開方數的取值范圍:被開方數a≥0

  10、平方根性質:①一個正數的平方根有兩個,它們互為相反數。②0的平方根是它本身0。③負數沒有平方根開平方;求一個數的平方根的運算,叫做開平方。

  11、平方根與算術平方根區別:定義不同、表示方法不同、個數不同、取值范圍不同。

  12、聯系:二者之間存在著從屬關系;存在條件相同;0的算術平方根與平方根都是0

  13、含根號式子的意義:表示a的平方根,表示a的算術平方根,表示a的負的平方根。

  14、求正數a的算術平方根的方法;

  完全平方數類型:①想誰的平方是數a。②所以a的平方根是多少。③用式子表示。

  求正數a的算術平方根,只需找出平方后等于a的正數。

初中數學活動總結 篇3

  1初中數學教學如何進行學情分析

  1.基于學情分析,確定教學目標

  教學目標對教學有方向性的指導作用,它是教學的出發點也是歸屬點,學情分析是教學目標設定的基礎,沒有學情分析基礎的教學目標是不科學的,科學的教學應通過分析學生的“已知”和“未知”來確定教學目標。例如,筆者曾在教人教版七年級上冊《正數和負數》這一章節時,先進行這樣的學情分析:學生已經學習過整數和分數(包括小數),對數的概念有了一定的了解,但是對生活中數的應用理解不深。針對這一情況,筆者將本節課的教學目標設定為:整理前兩個學段學過的整數、分數(包括小數)的知識,掌握正數和負數的概念;能區分兩種不同意義的量,會用符號表示正數和負數;體驗數學發展的一個重要原因是生活生產的需要,激發學生學習數學的興趣。這一教學目標不但重視問題解決的結果,而且重視問題解決的過程以及學生在問題解決過程中的體驗等。

  2.基于學情分析,喚起學生學習數學的興趣

  只有當學生對所學內容產生了興趣,形成了內在的需要和動機時,他才能具有達成目標的主動性,由“要我學”變為“我要學”。如在學習《橢圓》一節時,首先我讓一位學生按照課本要求在黑板上用事先準備好的材料自主畫橢圓,其余學生觀察橢圓的形成過程,通過學生的觀察和實踐,培養學生探究問題和動手操作的能力,加之在學習本課之前,學生已經學習了《曲線與方程》部分內容,這就為得出橢圓的定義和標準方程做了鋪墊。就學情而言,本節課的重點是掌握橢圓的定義、幾何圖形、標準方程及簡單性質,了解橢圓在刻畫現實世界和解決實際問題中的作用。學生自主動手操作的過程直觀性強,吸引了全班學生的眼球,一下子點燃了學生的思維火花,從而為本課數學的高效教學奠定了堅實的基礎。

  3.基于學情分析,培養學生的學習能力

  “學習需要”和“學習準備”都是學情分析的重點內容,在上每一節新課之前,都要分析本班學生的整體學習能力和特殊群體的學習能力,并在教學中采取相應的措施。譬如普通高中課程標準實驗教科書《數學》(必修2)《直線、平面平行的判定及其性質》一節中所涉及的定理、性質較多,且所任教班級大部分學生基礎比較薄弱。教學時筆者鼓勵較為積極的學生上臺講解,教師退居傾聽者和引導者的角色,讓學生成為課堂的主角。這就促使上臺講解的同學必須先理清思路,組織語言;臺下聽講的同學對這一新穎的方式感到新奇,促使他們認真聽講,積極思考,參與的熱情高漲。這一變化不僅激發了講課學生的積極性,也給聽課的學生注入了一支強心劑,引起學生對數學的興趣,提升課堂教學效果的同時,對于學生培養數學思維和鍛煉語言表述能力也大有裨益。

  2提高數學課堂效率

  設計問題

  “好奇”是興趣的基礎,如果把難以理解的數學問題設計成與學生日常生活有聯系的問題,然后呈現給學生,這樣他們會很容易由好奇心引起需要,引起求知欲望和學習興趣,不僅調動了他們的學習興趣,也同時加深了學生對問題的理解記憶。

  我曾經就有過這樣的經歷,在學習整式加減這部分的時候,我們遇到了這樣一道題:x-y=2,求3y-3x+2(x-y)的值。對于這樣的題,學生會覺得很難,沒有思路。通過老師的講解后,再次遇到還是不會。我們通常是說明y-x與x-y是互為相反數的,學生不感興趣就記不住。如果我們把x-y看成是一家人,他們家的門牌號是2,那么y-x這家人的門牌號正好相反,說明這兩家人是有聯系的,他們是親屬關系,互為相反數。這樣講學生會認為很有意思,并記憶深刻。

  設計實驗

  學生是學習的主體。如果教師設計的內容再精彩,學生不聽、不學,也沒有興趣,也會事倍功半。上課前設計與本節課內容相關的小故事或是小實驗,以此來集中學生的注意力,讓學生養成關注數學的習慣,學生就會對數學產生興趣和期待,在每節課上課前就已經期待老師會有什么樣的驚喜,這樣學生就會不知不覺地喜歡上數學。

  所以,我嘗試用與眾不同的方式來吸引學生。我曾在學習等式性質這節課時,首先拿出了天枰,然后拿出了兩個完全一樣的棒棒糖放在天枰上,使天枰平衡,學生馬上就能說出兩邊相等。我又拿出了兩塊完全一樣的巧克力,同時放在天枰上,天枰依然平衡。學生通過小組合作可以探究出等式的性質,并且哪一組最先探究出結果,哪一組就能獲得這些獎勵。這樣做不僅集中了學生的注意力,并且調動了學生學習的積極性,培養了學生小組合作的能力,從而提高了課堂教學效率。

  3數學教學方法

  改變傳統的教學模式,增強課堂教學的趣味性

  “良好的開端,是成功的一半”。如何誘發學生產生與學習內容、學習活動本身相聯系的直接學習興趣,使學生從新課伊始就產生強烈的求知欲望,是至關重要的。如教學“三角形內角和”可用“猜”的辦法。課前讓學生每人準備一個任意三角形,并量出每一個內角的度數。上課時,隨意叫學生說出三角形中的兩個內角的'度數以后,教師猜第三個內角的度數。教師每次都能猜對,學生驚奇之余,急切地想探尋其中的奧秘,于是就會積極投入到新知識的學習當中去。低年級學生年齡小、好勝心強,教學中可以充分利用學生的這一特點,讓學生體驗通過自己的努力而獲得成功的喜悅。如在教學“乘法豎式計算”時,教師對學生說:“這節課我們要學的乘法豎式與以前學的加法豎式寫法基本相同,只是把原來的加號變為乘號。”教師繼續問:“現在誰能幫助老師把這個豎式寫出來”這樣一個新問題通過學生自己的努力就解決了,教師沒有過多地講解,學生卻陶醉于成功的喜悅之中。

  從生活中的例子和學生熟悉的事物入手,簡化復雜的數學問題

  數學知識原本就比較抽象,要使抽象的內容變得具體易懂,就得從生活中挖掘素材,在日常生活中發現數學知識,利用數學知識來提高學習的興趣。例如,講“概率”這一節時,這個概念的描述非常抽象,學生不易理解,在教學中筆者做了如下改進:模仿一個商場的活動設置了個轉盤,讓學生體驗中獎的可能性,極大地吸引了學生的興趣。最后,筆者還準備了一份“豐厚”的獎品,讓學生仿照上面的例子設計一個游戲方案,使自己盡可能地獲得這份獎品,這時,學生興趣正濃,一定會想:怎么設置方案自己機會才大呢游戲與數學概念無形中連在了一起,此時此刻,思維的火花不點自燃。

  用精彩的問題設置吸引學生,誘發求知欲

  在現代教學過程中,學生是教學的主體,教師需要做的是引導和規范。美國著名心理學家布魯納說:“學習者不應是信息的被動接受者,而應是知識獲取過程中的主動參與者。”因此,筆者決定把課堂還給學生,讓他們真正成為課堂的主人。課堂提問是啟發學生積極思維的重要手段,教師要善于運用富有吸引力的提問激發學生的興趣。

  4數學思維培養

  把握教材是高效教學的重要前提

  我們在聽課中經常發現,教師上課,就題講題,就事論事,分不清輕重緩急,平均使用力量,照本宣科。發生這種現象的主要原因,在于教師沒有把握教材。把握教材要從全局著眼,從整體上去認識教材,并用聯系的觀點系統地分析教材。首先在理解《標準》基本理念的前提下讀懂教材。通過反復閱讀教材,查閱有關教學參考資料,了解全冊教材的編寫特點,明確各部分教學內容的目的要求和在全套教材體系中的地位,了解它們之間的內在聯系;研究全冊教材的所有知識點在各單元的分布情況;還要研究每個單元和每節課的教學目標。

  其次,要熟練地掌握教材的知識體系、邏輯結構和編排意圖。確定出每個單元和每節課的教學重點和難點,并制定出相應的教學目標。第三,把握教材中的知識結構轉化為教師的認識結構,只有到了這一步才算把握了教材,教學中才能駕輕就熟,寓繁于簡。

  創造性地使用教材是高效教學的關鍵

  教材只是為學生的學習活動提供了基本線索,是實現課程目標,實施教學的重要資源,而不是資源。實驗教材為廣大教師提供了一個創造性使用的廣闊空間。如,有的教學內容在呈現方式上有一定的彈性,便于大家靈活使用。但實驗教材處于實驗階段,可能還存在這樣或那樣的不足,所以,我們在教學教程中,要依據《標準》的精神,結合本地本校及學生的實際情況,創造性地使用教材,積極開發、利用各種教學資源,為學生提供豐富多彩的學習素材。

  下面提供幾點創造性地使用教材的建議:1、可以根據情況重新調整知識的順序。2、可以結合本地和學生熟悉的生活實際,提出能達到同樣教學目的的有思考價值的問題,讓學生在解決問題的過程中,體會數學的價值,學習解決問題的策略。3、可以擴大例題的思維空間,體現知識的整體效應,突出知識的內在聯系和數學思想方法。4、可以根據實際需要適當補充或刪減有關教學內容,但是也應注意,在創造性地使用教材的過程中,不要隨意降低或撥高教學要求。

初中數學活動總結 篇4

  1、弧長公式

  n°的圓心角所對的弧長l的計算公式為L=nπr/180

  2、扇形面積公式,其中n是扇形的圓心角度數,R是扇形的半徑,l是扇形的弧長.

  S=﹙n/360﹚πR2=1/2×lR

  3、圓錐的側面積,其中l是圓錐的母線長,r是圓錐的地面半徑.

  S=1/2×l×2πr=πrl

  4、弦切角定理

  弦切角:圓的切線與經過切點的弦所夾的角,叫做弦切角.

  弦切角定理:弦切角等于弦與切線夾的弧所對的圓周角.

  一、選擇題

  1.(20__o珠海,第4題3分)已知圓柱體的底面半徑為3cm,髙為4cm,則圓柱體的側面積為

  A.24πcm2B.36πcm2C.12cm2D.24cm2

  考點:圓柱的計算.

  分析:圓柱的側面積=底面周長×高,把相應數值代入即可求解.

  解答:解:圓柱的側面積=2π×3×4=24π.

  故選A.

  點評:本題考查了圓柱的計算,解題的關鍵是弄清圓柱的側面積的計算方法.

  2.(20__o廣西賀州,第11題3分)如圖,以AB為直徑的⊙O與弦CD相交于點E,且AC=2,AE=,CE=1.則弧BD的長是

  A.B.C.D.

  考點:垂徑定理;勾股定理;勾股定理的逆定理;弧長的計算.

  分析:連接OC,先根據勾股定理判斷出△ACE的形狀,再由垂徑定理得出CE=DE,故=,由銳角三角函數的定義求出∠A的度數,故可得出∠BOC的度數,求出OC的長,再根據弧長公式即可得出結論.

  解答:解:連接OC,

  ∵△ACE中,AC=2,AE=,CE=1,

  ∴AE2+CE2=AC2,

  ∴△ACE是直角三角形,即AE⊥CD,

  ∵sinA==,

  ∴∠A=30°,

  ∴∠COE=60°,

  ∴=sin∠COE,即=,解得OC=,

  ∵AE⊥CD,

  ∴=,

  ∴===.

  故選B.

初中數學活動總結 篇5

  一.圓的定義

  1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。

  2.平面上一條線段,繞它的一端旋轉360°,留下的軌跡叫圓。

  二.圓心

  1.定義1中的定點為圓心。

  2.定義2中繞的那一端的端點為圓心。

  3.圓任意兩條對稱軸的交點為圓心。

  4.垂直于圓內任意一條弦且兩個端點在圓上的線段的二分點為圓心。

  注:圓心一般用字母O表示

  5.直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。

  6.半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。

  7.圓的直徑和半徑都有無數條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的`二分之一.d=2r或r=二分之d。

  8.圓的半徑或直徑決定圓的大小,圓心決定圓的位置。

  三.圓的基本性質

  1.圓的對稱性

  (1)圓是軸對稱圖形,它的對稱軸是直徑所在的直線。

  (2)圓是中心對稱圖形,它的對稱中心是圓心。

  (3)圓是旋轉對稱圖形。

  2.垂徑定理

  (1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。

  (2)推論:

  平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。

  平分弧的直徑,垂直平分弧所對的弦。

  3.圓心角的度數等于它所對弧的度數。圓周角的度數等于它所對弧度數的一半。

  (1)同弧所對的圓周角相等。

  (2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。

  4.在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。

  5.夾在平行線間的兩條弧相等。

  (1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。

  (2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。

  (直角三角形的外心就是斜邊的中點。)

  6.直線與圓的位置關系。d表示圓心到直線的距離,r表示圓的半徑。

  直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;直線與圓沒有交點,直線與圓相離。

  四.圓和圓

  1.兩個圓沒有公共點且每個圓的點都在另一個圓的外部時,叫做這兩個圓的外離。

  2.兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的外部,叫做兩個圓的外切。

  3.兩個圓有兩個交點,叫做兩個圓的相交。

  4.兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的內部,叫做兩個圓的內切。

  5.兩個圓沒有公共點且每個圓的點都在另一個圓的內部時,叫做這兩個圓的內含。

  五.正多邊形和圓

  1.正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。

  2.正多邊形與圓的關系:

  (1)將一個圓n(n≥3)等分(可以借助量角器),依次連結各等分點所得的多邊形是這個圓的內接正多邊形。

  (2)這個圓是這個正多邊形的外接圓。

初中數學活動總結 篇6

  初中數學多項式的加法中考知識點

  多項式和單項式一起被稱為整式,整式的運算離不開加法,多項式也是如此。

  多項式的加法

  有限個單項式之和稱為多元多項式,簡稱多項式。不同類的單項式之和表示的多項式,其中系數不為零的單項式的最高次數,稱為此多項式的次數。

  多項式的加法,是指多項式中同類項的系數相加,字母保持不變(即合并同類項)。多項式的乘法,是指把一個多項式中的每個單項式與另一個多項式中的每個單項式相乘之后合并同類項。

  F上x1,x2,…,xn的多項式全體所成的集合F[x1,x2,…,xn],對于多項式的加法和乘法成為一個環,是具有單位元素的整環。 域上的多元多項式也有因式分解惟一性定理。

  關于多項式的加法計算的中考知識要領已經為大家整合出來了,請同學們相應做好筆記了。

初中數學活動總結 篇7

  1.有理數:

  (1)凡能寫成形式的數,都是有理數。正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數。注意:0即不是正數,也不是負數;—a不一定是負數,+a也不一定是正數;p不是有理數;

  (2)有理數的分類:①②

  2.數軸:數軸是規定了原點、正方向、單位長度的一條直線。

  3.相反數:

  (1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

  (2)相反數的和為0?a+b=0?a、b互為相反數。

  4.絕對值:

  (1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

  (2)絕對值可表示為:或;絕對值的問題經常分類討論;

  5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數—小數>0,小數—大數<0。

  6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那么的倒數是;若ab=1?a、b互為倒數;若ab=—1?a、b互為負倒數。

  7.有理數加法法則:

  (1)同號兩數相加,取相同的符號,并把絕對值相加;

  (2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

  (3)一個數與0相加,仍得這個數。

  8.有理數加法的運算律:

  (1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c)。

  9.有理數減法法則:減去一個數,等于加上這個數的相反數;即a—b=a+(—b)。

  10.有理數乘法法則:

  (1)兩數相乘,同號為正,異號為負,并把絕對值相乘;

  (2)任何數同零相乘都得零;

  (3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。

  11.有理數乘法的運算律:

  (1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac。

  12.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,。

  13.有理數乘方的法則:

  (1)正數的任何次冪都是正數;

  (2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(—a)n=—an或(a—b)n=—(b—a)n,當n為正偶數時:(—a)n=an或(a—b)n=(b—a)n。

  14.乘方的定義:

  (1)求相同因式積的運算,叫做乘方;

  (2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

  15.科學記數法:把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法。

  16.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位。

  17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。

  18.混合運算法則:先乘方,后乘除,最后加減。

  本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運算法則解決實際問題。

  體驗數學發展的一個重要原因是生活實際的需要。激發學生學習數學的興趣,教師培養學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創設情境,充分體現學生學習的主體性地位。

初中數學活動總結 篇8

  1、正數和負數的有關概念

  (1)正數:比0大的數叫做正數;

  負數:比0小的數叫做負數;

  0既不是正數,也不是負數。

  (2)正數和負數表示相反意義的量。

  2、有理數的概念及分類

  3、有關數軸

  (1)數軸的三要素:原點、正方向、單位長度。數軸是一條直線。

  (2)所有有理數都可以用數軸上的點來表示,但數軸上的點不一定都是有理數。

  (3)數軸上,右邊的數總比左邊的數大;表示正數的點在原點的右側,表示負數的點在原點的左側。

  (2)相反數:符號不同、絕對值相等的兩個數互為相反數。

  若a、b互為相反數,則a+b=0;

  相反數是本身的是0,正數的相反數是負數,負數的相反數是正數。

  (3)絕對值最小的數是0;絕對值是本身的數是非負數。

  4、任何數的絕對值是非負數。

  最小的正整數是1,最大的負整數是-1。

  5、利用絕對值比較大小

  兩個正數比較:絕對值大的那個數大;

  兩個負數比較:先算出它們的絕對值,絕對值大的反而小。

  6、有理數加法

  (1)符號相同的兩數相加:和的符號與兩個加數的符號一致,和的絕對值等于兩個加數絕對值之和.

  (2)符號相反的兩數相加:當兩個加數絕對值不等時,和的符號與絕對值較大的加數的符號相同,和的絕對值等于加數中較大的絕對值減去較小的絕對值;當兩個加數絕對值相等時,兩個加數互為相反數,和為零.

  (3)一個數同零相加,仍得這個數.

  加法的交換律:a+b=b+a

  加法的結合律:(a+b)+c=a+(b+c)

  7、有理數減法:減去一個數,等于加上這個數的相反數。

  8、在把有理數加減混合運算統一為最簡的形式,負數前面的加號可以省略不寫.

  例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12-25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和.”

  9、有理數的乘法

  兩個數相乘,同號得正,異號得負,再把絕對值相乘;任何數與0相乘都得0。

  第一步:確定積的符號第二步:絕對值相乘

  10、乘積的符號的確定

  幾個有理數相乘,因數都不為0時,積的符號由負因數的個數確定:當負因數有奇數個時,積為負;

  當負因數有偶數個時,積為正。幾個有理數相乘,有一個因數為零,積就為零。

  11、倒數:乘積為1的兩個數互為倒數,0沒有倒數。

  正數的倒數是正數,負數的倒數是負數。(互為倒數的兩個數符號一定相同)

  倒數是本身的只有1和-1。

初中數學活動總結 篇9

  一、全新的研修,全新的體驗。

  20xx年xx月xx日,全省一百多名數學教師齊聚濟南,開展為期10天的集中加分散的研修學習。 晚上的破冰活動,使每一個人都能感覺到,這100名教師都是全省初中數學界最優秀的代表。這其中有多位齊魯名師、山東優秀教師、山東創新人物、全國優秀教師、全國課改實驗先進教師,更不乏山東教學能手、山東省特級教師、省優質課一等獎獲得者等等,很多教師不僅在數學上赫赫有名,也有很多班級管理方面的省級專家。后面的研修,也進一步證明了這是一個扎實務實的教師團隊。

  各級培訓,越來越科學、務實,越來越需要耗費精力,這大家都是早有心理準備的。但本次培訓中精力付出之大,還是遠遠超過了每一個人的預期。對于我來說,很渴望聽到專家醍醐灌頂是的指點,也很希望學習別人先進的經驗。但開始培訓后,卻沒有和我想象的一樣——聽報告和觀摩優秀課例,而是從一開始就在做任務培訓。整個培訓都是圍繞著一個課例打磨展開和結束的。“三次備課、兩輪打磨、4段視頻制作、多個文本撰寫”,從問題選擇到問題澄清,從課例選擇到基于研究主題的一次次策劃,從教學設計的不斷完善到課堂觀察量表的細細斟酌,從課堂前臺的關注到背后理論的不斷深入,從任務分擔到共同完成制作。一個不一樣的研修,使我們感受到了很多從未有過的體驗,給了我們許多不一樣的思考和震撼。

  二、艱巨的任務,共同的成果。

  這次研修,是一次基于提高校本研修實效性的體驗式的范例學習,這次研修,是一次基于任務完成的研修。29日上午,高研班舉行了簡短而又隆重的開班典禮。齊魯師范學院副院長陳小言、山東省中小學師訓干訓中心主任畢詩文、副主任劉文華、省中小學教師遠程研修項目執行主任蔣敦杰、山東省中小學教師遠程研修初中項目主任梁承鋒和省基礎教育課程研究中心副主任李紅婷教授等領導和專家出席了本次高研班開班儀式。開幕式上,專家和領導就明確的指出這次高級研修班的任務是為20xx年全省初中數學教師全員遠程研修開發課例資源。

  開幕式只有20分鐘,很快就進入了任務培訓狀態。專家的報告大多是指向如何開展工作的,第一天培訓就顯示了任務的緊張。上午蔣教授的報告《教師研修轉型與省骨干高級研修》到12點,下午首都師范大學王尚志教授《初中數學教學幾個問題》到5:30,晚上梁承鋒教授《20xx初中骨干教師高級研修目標任務與課例研究變式應用》到了10:30盡管專家們都在強調如何開展工作,如何重要和辛苦,我們還是沒有進入狀態。但王尚志教授的報告,讓大家很興奮,他探討的問題很實在,和一線教師的思考很接近,我們大多數人都不是第一次聽王教授的報告,但看得出這次報告還是給大家帶來了很多思考和收益。而且后續的工作證明,王尚志教授的報告給大家的工作起了很好的指導作用。

  第二天上午首席專家李紅婷教授為大家作了題為《課例研究問題與研究任務——以“課例打磨”為載體的教學改進思路》的報告,李教授從教師培訓方式的轉型、專家型教師的成長路徑、課例與課例設計、課例研究問題與研究問題、觀課與評課等幾個方面作了深入的解讀。下午兩位參加過課例研修教師的現身說法,讓大家不但明白了基本流程和思路,也意識到了責任之大和任務之重。

  伴隨著兩天的報告,是大家對關注問題的討論和澄清。很快,我們六個組各自確定了自己的研究主題,并進行了去偽存真式的剝離和澄清,并撰寫了各自的研修計劃。首席專家李紅婷教授的指導是非常重要的,而且貫穿任務全過程。李教授的指導具體、清楚,高屋建瓴而且不厭其煩,從早上到深夜,還處理著一些其他的工作,給大家帶來了很大的感動。

  更多的時間留給了以小組為單位的工作團隊。我們小組由16位教師組成,有四位來自濱州,有三位來自東營,有九位來自煙臺。其中由來自煙臺市芝罘區教科研中心的林光老師任組長,由來自濱州市北鎮中學實驗初中部的邢成云老師和萊州市實驗中學張延芳老師任指導老師,由來自東營市育才中學的劉江老師任組內專家,根據工作需要,組內又分為4個任務小組。

  每一項任務都被分解為幾個部分來討論和撰寫,然后再合成討論,再經指導教師、組內專家把關后,再提交李教授審核,然后再審核定稿。課例打磨計劃的制定,讓大家完全進入了工作狀態,也了解了理論研究、行動研究和載體呈現的重要性。授課任務由煙臺三中分校的曲曉媛老師承擔,她自我封閉了一天進行獨立一備,其他人則對a視頻腳本進行了細致的研討,為便于在網絡上呈現這個遞進的過程,我們進行了錄音和會議記錄,想保持這個課例打磨的真實過程。在二備的過程中,大家各抒己見,充分討論,很快達成了共識,二備很順利,b腳本也很順利完成了第一稿。

  第一段集中研修,7天很快結束了。我們才發現自己的節奏是那么緊張。基本上是房間、餐廳和工作室,每天從早上到深夜。多數人連樓也沒有走出去。第二階段是分散研修和錄課的時間。但每天大家還是第一時間上網交流和學習。盡管錄課是在煙臺,大家還是克服困難參加了實地的課堂觀察。

  12月21日,大家重聚濟南,進行了觀課交流,錄制b視頻和d視頻,完成了網絡記錄和呈現任務,并撰寫了課例學習導引等,最終一個完整的課例打磨資源,在大家的共同努力下順利完成。回顧整個過程,我們不得不說,每一項工作成果無不都是大家共同智慧的結晶。每個小過程,我們組內都進行詳細而明確的分工,而且這種分工特別重視彼此的互助性。每位教師都非常積極認真的完成各自的任務和協助任務。任務是艱巨的,但結果也是令人振奮的。

  三、不同的體會,共同的收獲。

  (一)這次研修,給了大家太多的感慨。

  教學設計、上課、聽課、評課本是教師最經常的工作,卻因沒有明確的問題引領,沒有客觀的觀察統計,沒有必要的理性思考,沒有更深一步的行動和理論跟進,使我們的校本研修擺脫不了低效的困境,也浪費了老師們的時間,也使得大家的水平和課堂教學質量得不到提高。聚焦問題,不僅需要理論的學習和思考,更需要真實、客觀和科學的關注,更需要行動研究和逐步的'跟進踐行,在堅決問題中,成長自己,促進學生。

  (二)這次研修,給了大家太多的感動。

  參加研修的教師,大多是學校里的中堅力量,身兼多職,但大家對待這項工作,無不盡心盡力,尤其在當討論的時候,都愿意把自己的觀點拿出來,與別人分享,闡述自己的理由。彼此真誠的交流,常讓人有無聲處聞驚雷的感覺。與會的工作人員,也都盡可能的為別人服務。各位專家,尤其是李紅婷教授更是耐心指導,精益求精。可以說,研修中,每一個人感動著別人的同時,也被別人感動著。雅斯貝爾斯說:“教育就是一朵云推動另一朵云,一棵樹搖動另一棵樹,一個靈魂喚醒另一個靈魂。”研修也正是這樣。我們有理由相信,教育戰線上不乏執著的追夢人,不乏具有高尚情懷和追求的教育工作者。

  (三)這次研修,給了大家太多的收獲。

  雖然整個研修,都是圍繞任務展開的。但服務他人的同時,更成就的是自己。在課例打磨的過程中,每一位教師都有自己的收獲。有的開闊了思路,有的提升了理論,有的凈化了心靈。同時,也結交了很多業內同行。其實,同伴的交流是最大的財富。有一種收獲,可以穿透時空,長久的留在記憶里,那就是精神的成長和彼此的感動。

  (四)這次研修,給了大家更多的思考。

  日常教學研究,應該聚焦于教學有關的各類現實存在的問題,應該注意反復開放和聚焦,在解決和研究中,不斷提出新的問題和實際的行動跟進研究。

  我們感覺到,廣大的一線教師都是有強烈的教育責任感、使命感和教育情懷的,對教育教學的追求是大家共同的心愿。通過本次高研班研修,我們認識到其實大道至簡,道不遠人。

初中數學活動總結 篇10

  同位角知識:兩條直線a,b被第三條直線c所截會出現“三線八角”。

  同位角的特征識別:

  1.在截線的同旁;

  2.在被截兩直線的同方向;

  3.同位角截取圖呈“F”型。

  平行線的性質與判定

  平行線的性質:兩直線平行,同位角相等。

  知識歸納:平行線的判定:同位角相等,兩直線平行。

初中數學活動總結 篇11

  知識要領:非負數,顧名思義,就是不是負數的數,也就是零和正實數。例如:0、3.4、9/10、π(圓周率)。

  非負數

  非負數大于或等于0。

  非負數中含有有理數和無理數。

  非負數的和或積仍是非負數。

  非負數的和為零,則每個非負數必等于零。

  非負數的積為零,則至少有一個非負數為零。

  非負數的絕對值等于本身。

  常見的非負數

  實數的絕對值、實數的偶次冪、算術根等都是常見的非負數。

  常見表現形式

  非負數的準確數學表達是a≥0、│a│、a^2n是常見的非負數。

  知識歸納:任何一個非負數乘以-1都會得到一個非正數。

初中數學活動總結 篇12

  最簡單的解釋就是,不等式是指用不等號可以將兩個解析式連接起來所成的式子。

  1.概念:在一個式子中的數的關系,不全是等號,含不等符號的式子,那它就是一個不等式.例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3,5x≠5等>x是超越不等式。

  2、分類:不等式分為嚴格不等式與非嚴格不等式。

  一般地,用純粹的大于號、小于號“>”“<”連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)

  “≥”(大于等于符號)“≤”(小于等于符號)連接的不等式稱為非嚴格不等式,或稱廣義不等式。

  通常不等式中的數是實數,字母也代表實數,不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z )(其中不等號也可以為<,≥,> 中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達一個命題,也可以表示一個問題。

  我們大家在判定不等式時要記得,在一個式子中的數的關系,不全是等號,含不等符號的式子,那它就是一個不等式。

初中數學活動總結 篇13

  1.分式及其基本性質:分式的分子和分母同時乘以(或除以)一個不等于零的整式,分式的值不變。

  2.分式的運算:

  (1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

  (2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減。

初中數學活動總結 篇14

  中考數學知識點:分式混合運算法則

  分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;變號必須兩處,結果要求最簡.

  分式混合運算法則:

  分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);

  乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;

  加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;

  變號必須兩處,結果要求最簡.

  中考數學二次根式的加減法知識點總結

  二次根式的加減法

  知識點1:同類二次根式

  (Ⅰ)幾個二次根式化成最簡二次根式以后,如果被開方數相同,這幾個二次根式叫做同類二次根式,如這樣的二次根式都是同類二次根式。

  (Ⅱ)判斷同類二次根式的方法:(1)首先將不是最簡形式的二次根式化為最簡二次根式以后,再看被開方數是否相同。(2)幾個二次根式是否是同類二次根式,只與被開方數及根指數有關,而與根號外的因式無關。

  知識點2:合并同類二次根式的方法

  合并同類二次根式的理論依據是逆用乘法對加法的分配律,合并同類二次根式,只把它們的系數相加,根指數和被開方數都不變,不是同類二次根式的不能合并。

  知識點3:二次根式的加減法則

  二次根式相加減先把各個二次根式化成最簡二次根式,再把同類二次根式合并,合并的方法為系數相加,根式不變。

  知識點4:二次根式的混合運算方法和順序

  運算方法是利用加、減、乘、除法則以及與多項式乘法類似法則進行混合運算。運算的順序是先乘方,后乘除,最后加減,有括號的先算括號內的。

  知識點5:二次根式的加減法則與乘除法則的區別

  乘除法中,系數相乘,被開方數相乘,與兩根式是否是同類根式無關,加減法中,系數相加,被開方數不變而且兩根式須是同類最簡根式。

  中考數學知識點:直角三角形

  ★重點★解直角三角形

  ☆內容提要☆

  一、三角函數

  1.定義:在Rt△ABC中,∠C=Rt∠,則sinA=;cosA=;tgA=;ctgA=.

  2.特殊角的三角函數值:

  0°30°45°60°90°

  sinα

  cosα

  tgα/

  ctgα/

  3.互余兩角的三角函數關系:sin(90°-α)=cosα;…

  4.三角函數值隨角度變化的關系

  5.查三角函數表

  二、解直角三角形

  1.定義:已知邊和角(兩個,其中必有一邊)→所有未知的邊和角。

  2.依據:①邊的關系:

  ②角的關系:A+B=90°

  ③邊角關系:三角函數的定義。

  注意:盡量避免使用中間數據和除法。

  三、對實際問題的處理

  1.俯、仰角:

  2.方位角、象限角:

  3.坡度:

  4.在兩個直角三角形中,都缺解直角三角形的條件時,可用列方程的辦法解決。

初中數學活動總結 篇15

  三角形的知識點

  1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

  2、三角形的分類

  3、三角形的三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

  4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

  5、中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

  6、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

  7、高線、中線、角平分線的意義和做法

  8、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

  9、三角形內角和定理:三角形三個內角的和等于180°

  推論1直角三角形的兩個銳角互余

  推論2三角形的一個外角等于和它不相鄰的兩個內角和

  推論3三角形的一個外角大于任何一個和它不相鄰的內角;三角形的內角和是外角和的一半

  10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

  11、三角形外角的性質

  (1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

  (2)三角形的一個外角等于與它不相鄰的兩個內角和;

  (3)三角形的一個外角大于與它不相鄰的任一內角;

  (4)三角形的外角和是360°。

  四邊形(含多邊形)知識點、概念總結

  一、平行四邊形的定義、性質及判定

  1、兩組對邊平行的四邊形是平行四邊形。

  2、性質:

  (1)平行四邊形的對邊相等且平行

  (2)平行四邊形的對角相等,鄰角互補

  (3)平行四邊形的對角線互相平分

  3、判定:

  (1)兩組對邊分別平行的四邊形是平行四邊形

  (2)兩組對邊分別相等的四邊形是平行四邊形

  (3)一組對邊平行且相等的四邊形是平行四邊形

  (4)兩組對角分別相等的四邊形是平行四邊形

  (5)對角線互相平分的四邊形是平行四邊形

  4、對稱性:平行四邊形是中心對稱圖形

  二、矩形的定義、性質及判定

  1、定義:有一個角是直角的平行四邊形叫做矩形

  2、性質:矩形的四個角都是直角,矩形的對角線相等

  3、判定:

  (1)有一個角是直角的平行四邊形叫做矩形

  (2)有三個角是直角的四邊形是矩形

  (3)兩條對角線相等的平行四邊形是矩形

  4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。

  三、菱形的定義、性質及判定

  1、定義:有一組鄰邊相等的平行四邊形叫做菱形

  (1)菱形的四條邊都相等

  (2)菱形的.對角線互相垂直,并且每一條對角線平分一組對角

  (3)菱形被兩條對角線分成四個全等的直角三角形

  (4)菱形的面積等于兩條對角線長的積的一半

  2、s菱=爭6(n、6分別為對角線長)

  3、判定:

  (1)有一組鄰邊相等的平行四邊形叫做菱形

  (2)四條邊都相等的四邊形是菱形

  (3)對角線互相垂直的平行四邊形是菱形

  4、對稱性:菱形是軸對稱圖形也是中心對稱圖形

  四、正方形定義、性質及判定

  1、定義:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形

  2、性質:

  (1)正方形四個角都是直角,四條邊都相等

  (2)正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  (3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形

  (4)正方形的對角線與邊的夾角是45°

  (5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形

  3、判定:

  (1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等

  (2)先判定一個四邊形是菱形,再判定出有一個角是直角

  4、對稱性:正方形是軸對稱圖形也是中心對稱圖形

  五、梯形的定義、等腰梯形的性質及判定

  1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性質:等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等

  3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形

  4、對稱性:等腰梯形是軸對稱圖形

  六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。

  七、線段的重心是線段的中點;平行四邊形的重心是兩對角線的交點;三角形的重心是三條中線的交點。

  八、依次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形。

  九、多邊形

  1、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

  2、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

  3、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

  4、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

  5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。

  6、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。

  7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

  8、公式與性質

  多邊形內角和公式:n邊形的內角和等于(n-2)·180°

  9、多邊形外角和定理:

  (1)n邊形外角和等于n·180°-(n-2)·180°=360°

  (2)邊形的每個內角與它相鄰的外角是鄰補角,所以n邊形內角和加外角和等于n·180°

  10、多邊形對角線的條數:

  (1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形

  (2)n邊形共有n(n-3)/2條對角線

  圓知識點、概念總結

  1、不在同一直線上的三點確定一個圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

  ②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2圓的兩條平行弦所夾的弧相等

  3、圓是以圓心為對稱中心的中心對稱圖形

  4、圓是定點的距離等于定長的點的集合

  5、圓的內部可以看作是圓心的距離小于半徑的點的集合

  6、圓的外部可以看作是圓心的距離大于半徑的點的集合

  7、同圓或等圓的半徑相等

  8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

  11、定理:圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角

  12、①直線L和⊙O相交d

  ②直線L和⊙O相切d=r

  ③直線L和⊙O相離d>r

  13、切線的判定定理:經過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14、切線的性質定理:圓的切線垂直于經過切點的半徑

  15、推論1經過圓心且垂直于切線的直線必經過切點

  16、推論2經過切點且垂直于切線的直線必經過圓心

  17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  18、圓的外切四邊形的兩組對邊的和相等,外角等于內對角

  19、如果兩個圓相切,那么切點一定在連心線上

  20、①兩圓外離d>R+r

  ②兩圓外切d=R+r

  ③兩圓相交R-rr)

  ④兩圓內切d=R-r(R>r)⑤兩圓內含dr)

  21、定理:相交兩圓的連心線垂直平分兩圓的公共弦

  22、定理:把圓分成n(n≥3):

  (1)依次連結各分點所得的多邊形是這個圓的內接正n邊形

  (2)經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  23、定理:任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

  24、正n邊形的每個內角都等于(n-2)×180°/n

  25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

  27、正三角形面積√3a/4a表示邊長

  28、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29、弧長計算公式:L=n兀R/180

  30、扇形面積公式:S扇形=n兀R^2/360=LR/2

  31、內公切線長=d-(R-r)外公切線長=d-(R+r)

  32、定理:一條弧所對的圓周角等于它所對的圓心角的一半

  33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  35、弧長公式l=a*ra是圓心角的弧度數r>0扇形面積公式s=1/2*l*r

初中數學活動總結 篇16

  ①直線和圓無公共點,稱相離。AB與圓O相離,d>r。

  ②直線和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

  ③直線和圓有且只有一公共點,稱相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離)

  平面內,直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是:

  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關于x的方程

  如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。

  如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。

  如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。

  2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,并且規定x1

  當x=-C/Ax2時,直線與圓相離;

初中數學活動總結 篇17

  初中數學集合的運算中考知識點集錦

  集合的運算知識:它包括有交換律、結合律、分配對偶律、對偶律、同一律等。

  集合的運算定律

  交換律:A∩B=B∩A

  A∪B=B∪A

  結合律:A∪(B∪C)=(A∪B)∪C

  A∩(B∩C)=(A∩B)∩C

  分配對偶律:A∩(B∪C)=(A∩B)∪(A∩C)

  A∪(B∩C)=(A∪B)∩(A∪C)

  對偶律:(A∪B)^C=A^C∩B^C

  (A∩B)^C=A^C∪B^C

  同一律:A∪Φ=A

  A∩U=A

  求補律:A∪A'=U

  A∩A'=Φ

  對合律:(A')'=A

  等冪律:A∪A=A

  A∩A=A

  零一律:A∪U=U

  A∩U=A

  吸收律:A∪(A∩B)=A

  A∩(A∪B)=A

  德·摩根定律(反演律):(A∪B)'=A'∩B'

  (A∩B)'=A'∪B'

  知識拓展:容斥原理(特殊情況):card(A∪B)=card(A)+card(B)-card(A∩B)

初中數學活動總結 篇18

  一、圓

  1、圓的有關性質

  在一個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點A隨之旋轉所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。

  由圓的意義可知:

  圓上各點到定點(圓心O)的距離等于定長的點都在圓上。

  就是說:圓是到定點的距離等于定長的點的集合,圓的內部可以看作是到圓。心的距離小于半徑的點的集合。

  圓的外部可以看作是到圓心的距離大于半徑的點的集合。連結圓上任意兩點的線段叫做弦,經過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。

  圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優弧。小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

  圓心相同,半徑不相等的兩個圓叫同心圓。

  能夠重合的兩個圓叫等圓。

  同圓或等圓的`半徑相等。

  在同圓或等圓中,能夠互相重合的弧叫等弧。

  二、過三點的圓

  1、過三點的圓

  過三點的圓的作法:利用中垂線找圓心

  定理不在同一直線上的三個點確定一個圓。

  經過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內接三角形。

  2、反證法

  反證法的三個步驟:

  ①假設命題的結論不成立。

  ②從這個假設出發,經過推理論證,得出矛盾。

  ③由矛盾得出假設不正確,從而肯定命題的結論正確。

  例如:求證三角形中最多只有一個角是鈍角。

  證明:設有兩個以上是鈍角。

  則兩個鈍角之和>180°

  與三角形內角和等于180°矛盾。

  不可能有二個以上是鈍角。

  即最多只能有一個是鈍角。

  三、垂直于弦的直徑

  圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸。

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

  推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。

  弦的垂直平分線經過圓心,并且平分弦所對的兩條弧。

  平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。

  推理2:圓兩條平行弦所夾的弧相等。

  四、圓心角、弧、弦、弦心距之間的關系

  圓是以圓心為對稱中心的中心對稱圖形。

  實際上,圓繞圓心旋轉任意一個角度,都能夠與原來的圖形重合。

  頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

  定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

  推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應的其余各組量都分別相等。

  五、圓周角

  頂點在圓上,并且兩邊都和圓相交的角叫圓周角。

  推理1:同弧或等弧所對的圓周角相等。同圓或等圓中,相等的圓周角所對的弧也相等。

  推理2:半圓(或直徑)所對的圓周角是直角。90°的圓周角所對的弦是直徑。

  推理3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。

  由于以上的定理、推理,所添加輔助線往往是添加能構成直徑上的圓周角的輔助線。

初中數學活動總結 篇19

  在授課這一階段應該好好分析學習情況,這是學生學習的進步以及養成很好素養的當務之急,在初中的數學授課中應該具體到每一位學生,弄清楚她們的行為、愛好、想法以及個人思想這一系列的東西對促進教育有重要影響。

  盡管當下大多數老師都明白學習情況的掌握十分關鍵,可再進一步的行動中卻發現了很多困難。

  1當下的初中數學學情分析態勢

  1.1分析方法科學性缺失通過樣本調查,超過半數的教師通過談話和提問的方式了解學生的興趣愛好和知識水平,教師進行學情分析的方法比較單一,缺乏相應的科學合理性。教學是一個復雜的過程,我們應該綜合運用各種方法,如問卷調查、談話、前測、后測、練習等,準確把握學生的知識能力水平和學習效果。

  1.2分析內容太泛化從調查來看,初中數學教師進行學情分析主要圍繞以下兩點進行:一是分析學生對將要學習的內容有無困難和興趣,這是對學生學習需要的分析;二是分析學生的學習能力、班級的整體水平等,這是對學生學習準備的分析。如此的學情分析,沒有結合具體教學內容和學生個體差異展開,內容粗糙,對教學并無實際指導意義。例如,一位教師這樣進行學情分析:該班學生數學基礎較好,有較強的學習欲望。這是對學生群體的心理和生理模糊特征的分析,并不是對本班學生具體知識水平和能力的分析,這樣的學情分析比較空洞抽象,對改進教學幫助不大。

  1.3學情分析的反饋工作沒有落實學情分析應貫穿教學的全過程,但從調查結果來看,很多教師都只是孤立地把學情分析當作備課的環節之一,沒有結合教學目標、教學重難點和作業練習來設計適應相應學情的教學環節,更沒有根據學情分析的結果來進行后續的反饋與完善工作。例如,在分析“學習需要”時,很多教師在備課環節分析了學生在學習中可能會遇到的困難,卻沒有針對這些可能性設計幫助學生克服困難的具體措施。針對學情分析的現狀,我認為,要能正確地進行學情分析、提高教學效率,必須明確兩個問題。一是分析什么,這就要弄懂幾個概念,包括“已知”、“未知”、“能知”、“怎么知”,“已知”指的是學生的知識經驗和與學習內容相關的能力水平;“未知”包含將要學習的知識和已經學習過了但學生沒有掌握的知識;“能知”就是指通過教學,學生能掌握什么知識;“怎么知”是如何學習到知識,包括學生的學習習慣和學習方法等。二應該通過多種方式進行學情分析,不僅需要根據自身的經驗,同時還需要通過實際觀察以及調查問卷等形式進行。

  2利用學情分析更好地開展數學教學

  2.1根據學情分析設定教學目標教學目標對教學有方向性的指導作用,它是教學的出發點也是歸屬點,學情分析是教學目標設定的基礎,沒有學情分析基礎的教學目標是不科學的,科學的教學應通過分析學生的“已知”和“未知”來確定教學目標。例如,我在教學人教版七年級上冊《正數和負數》這一章節時,先進行學情分析:學生已經學習過整數和分數(包括小數),對數的概念有了一定的了解,但是對生活中數的應用理解不深。根據對課前對學生學習情況的摸底調查,制定了本堂數學課的學習目標。一是復習上兩堂課關于有理數的相關知識點;二是在正號和負號在數中代表的意義;三是介紹這些不同概念數的產生背景,讓學生了解到數學的是人類改造自然的必然產物。這一教學目標不但重視問題解決的結果,而且重視問題解決的過程以及學生在問題解決過程中的體驗等。

  2.2根據學情分析增強學生學習主動性只有當孩子們對學習的知識十分喜歡時,就會出現內心的渴望與學習的理由,這樣他們才會有完成目標的積極性,從“要我學”換成“我要學”。如“有趣的七巧板”是一節數學教學活動課,通過本節課可以進一步豐富七年級學生對平面圖形中平行、垂直和角的有關內容的認識,培養學生探究問題的能力和獨創精神。就學情而言,在學習本課之前,學生已經學習了幾何的初步知識——線段、平行、垂直、角的概念,能夠借助三角尺、量角器、方格紙等畫線段、平行線、垂線、角。本節課的重點內容并不是繪制七巧板,而是借助七巧板來了解線段的位置關系,然后借助這套工具來設計和欣賞圖案,培養學生的空間想象以及審美,讓充滿好奇心的初中生對七巧板的操作充滿了求知欲,進而讓他們對數學學科產生興趣。2.3根據學情分析針對性開展教學“學習需要”和“學習準備”都是學情分析的重點內容,在上每一節新課之前,都要分析本班學生的整體學習能力和特殊群體的學習能力,并在教學中采取相應的措施。譬如人教版七年級下冊第七章《三角形的高、中線與角平分線》涉及的定理、性質、公式較多,且所任教班級大部分學生平時上課都不夠活躍。教學時筆者鼓勵較為積極的學生上臺講解,教師退居傾聽者和引導者的角色,讓學生成為課堂的主角。這就促使上臺講解的同學必須先理清思路,組織語言;臺下聽講的同學對這一新穎的方式感到新奇,促使他們認真聽講,積極思考,參與的熱情高漲。這一變化不僅激發了講課學生的積極性,也給聽課的學生注入了一支強心劑,引起學生對數學的興趣,提升課堂教學效果的同時,對于學生培養數學思維和鍛煉語言表述能力也大有裨益。

  3結語

  總的來說,學情分析并不屬于孤立形式,其實應是教師安排組織教學環節,從而使學生找到有益于自身發展的保證。正確的學情分析,教師不僅僅只注重學生的成績,也應了解學生的學習熱情、性格方面、興趣點等,參考教學改革的理念,進一步增強教學質量。

初中數學活動總結(精選19篇) 相關內容:
  • 初中數學研修工作總結(精選24篇)

    通過這段時間的培訓學習,使我深刻認識到學習的必要性和重要性。使我認識到當前課改的目的和意義,也使自己對課改有了深刻的認識,也大大提高了自己對本學科的理論素養。...

  • 初中數學研修工作總結集錦(精選20篇)

    通過培訓的學習,使我認識到當前課改的目的和意義,也使自己對課改有了深刻的認識,也大大提高了自己對本學科的理論素養。現將這次培訓體會總結如下:一、業務學習加強學習,提高思想認識,樹立新的理念。...

  • 初中數學年度總結(精選22篇)

    一、師德方面:加強修養,塑造師德我始終認為作為一名教師應把“師德”放在一個重要的位置上,因為這是教師的立身之本。“學高為師,身正為范”,這個道理古今皆然。...

  • 初中數學研修總結(精選20篇)

    數學是人們對客觀世界定性把握和定量刻畫、逐漸抽象概括、形成方法和理論,并進行廣泛應用的過程。近幾年來,通過數學新課程改革的實行,給基礎教育注入了生機和活力。...

  • 初中數學課堂教學經驗交流展示活動總結(精選3篇)

    12月14至16日,首屆全國初中數學課堂教學展示觀摩課評比活動在鄭州舉行,我有幸參加了此次觀摩活動。本次評比共有來自全國各省市的21位教師參評,其中有10位老師展示課堂,共有800多位教師到場觀摩。聽了專家的評課,讓我受益匪淺。...

  • 初中數學工作總結范文(通用16篇)

    這學期,一個全新的教育理念生本教育進入了我們的視線,將生本教育融入到高效課堂中來,通過這段時間的摸索和探索,我對實施高效生本課堂做如下總結。...

  • 初中數學年度工作總結(精選20篇)

    教學之路仍在腳下延伸,作為教學之路上的蹉跎前行者,不求夏花之燦爛,但求秋葉之靜美。在以后的工作中,我將保持自己的勤奮和執著,把自己的工作做的更好。...

  • 初中數學研修工作總結(精選15篇)

    通過培訓的學習,使我認識到當前課改的目的和意義,也使自己對課改有了深刻的認識,也大大提高了自己對本學科的理論素養。現將這次培訓體會總結如下:一、業務學習加強學習,提高思想認識,樹立新的理念。...

  • 初中數學第二課堂工作總結(精選3篇)

    一.意義為了喚起和發展優等生對數學及其應用的穩定興趣,拓寬和加深所學的知識充分地民展他們的數學才能,發展他們獨立地、創造性地使用教科書和科普讀物能力,以及培養他們一定的科學研究能力,我們初二年段準備成立數學興趣小組,現制定...

  • 初中數學重要知識點總結大全(精選16篇)

    1、多項式有有限個單項式的代數和組成的式子,叫做多項式。多項式里每個單項式叫做多項式的項,不含字母的項,叫做常數項。單項式可以看作是多項式的特例把同類單項式的系數相加或相減,而單項式中的字母的乘方指數不變。...

  • 初中數學研修總結(通用16篇)

    我是一名普普通通的中學數學教師,我覺得作為一個好老師,首先要愛他們,包容他們,我相信好學生是夸出來的,我不是神,只是一個普通的人,或許在工作中也有這樣那樣的失誤,但我會努力去關愛他們。對如何有效教學形成了獨特的見解。...

  • 初中數學的研修總結(精選19篇)

    一、全新的研修,全新的體驗。20xx年xx月xx日,全省一百多名數學教師齊聚濟南,開展為期10天的集中加分散的研修學習。晚上的破冰活動,使每一個人都能感覺到,這100名教師都是全省初中數學界最優秀的代表。...

  • 初中數學知識點總結歸納(精選20篇)

    1、一元二次方程解法:(1)配方法:(X±a)2=b(b≥0)注:二次項系數必須化為1(2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計算b2-4ac≥0若b2-4ac0則有兩個不相等的實根,若b2-4ac=0則有兩個相等的實根,若b2-4ac0則無解若b2-4ac≥0則用公式...

  • 初中數學三角函數基礎知識點總結(精選16篇)

    誘導公式的本質所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。常用的誘導公式公式一: 設為任意角,終邊相同的角的同一三角函數的值相等:sin(2k)=sin kzcos(2k)=cos kztan(2k)=tan kzcot(2k)=cot kz公式二: 設為任...

  • 初中數學工作坊個人的研修總結范文(精選20篇)

    一、全新的研修,全新的體驗。20xx年xx月xx日,全省一百多名數學教師齊聚濟南,開展為期10天的集中加分散的研修學習。晚上的破冰活動,使每一個人都能感覺到,這100名教師都是全省初中數學界最優秀的代表。...

  • 工作總結范文
主站蜘蛛池模板: 龙井市| 囊谦县| 郸城县| 阜南县| 五家渠市| 江西省| 岗巴县| 西平县| 县级市| 华容县| 洛浦县| 顺平县| 桐乡市| 郧西县| 日喀则市| 正蓝旗| 新昌县| 敦化市| 山西省| 阿巴嘎旗| 永定县| 鹤峰县| 钟山县| 澄江县| 尼玛县| 札达县| 乐安县| 濮阳市| 长汀县| 辛集市| 唐山市| 九龙坡区| 三亚市| 崇明县| 阿拉善盟| 宁津县| 阜南县| 金塔县| 灵川县| 休宁县| 张家川|